Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 76110 by mathocean1 last updated on 23/Dec/19

hello solve in R  tanx>(√3)  please explain me if possible.

$${hello}\:\mathrm{solve}\:\mathrm{in}\:\mathbb{R} \\ $$$$\mathrm{tan}{x}>\sqrt{\mathrm{3}} \\ $$$${please}\:{explain}\:{me}\:{if}\:{possible}. \\ $$

Answered by MJS last updated on 24/Dec/19

tan x =(√3)∧0≤x<2π  ⇒ x=(π/3)∨x=((4π)/3)  but y=tan x changes its sign at x=0, x=(π/2),  x=π and x=((3π)/2)  ⇒ tan x >(√3) ⇔ (π/3)<x<(π/2) ∨ ((4π)/3)<x<((3π)/2)  now if x∈R it′s the same in each period of length π  ⇒ tan x >(√3) ⇔ (π/3)+nπ<x<(π/2)+nπ with n∈Z

$$\mathrm{tan}\:{x}\:=\sqrt{\mathrm{3}}\wedge\mathrm{0}\leqslant{x}<\mathrm{2}\pi \\ $$$$\Rightarrow\:{x}=\frac{\pi}{\mathrm{3}}\vee{x}=\frac{\mathrm{4}\pi}{\mathrm{3}} \\ $$$$\mathrm{but}\:{y}=\mathrm{tan}\:{x}\:\mathrm{changes}\:\mathrm{its}\:\mathrm{sign}\:\mathrm{at}\:{x}=\mathrm{0},\:{x}=\frac{\pi}{\mathrm{2}}, \\ $$$${x}=\pi\:\mathrm{and}\:{x}=\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{tan}\:{x}\:>\sqrt{\mathrm{3}}\:\Leftrightarrow\:\frac{\pi}{\mathrm{3}}<{x}<\frac{\pi}{\mathrm{2}}\:\vee\:\frac{\mathrm{4}\pi}{\mathrm{3}}<{x}<\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$$$\mathrm{now}\:\mathrm{if}\:{x}\in\mathbb{R}\:\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{same}\:\mathrm{in}\:\mathrm{each}\:\mathrm{period}\:\mathrm{of}\:\mathrm{length}\:\pi \\ $$$$\Rightarrow\:\mathrm{tan}\:{x}\:>\sqrt{\mathrm{3}}\:\Leftrightarrow\:\frac{\pi}{\mathrm{3}}+{n}\pi<{x}<\frac{\pi}{\mathrm{2}}+{n}\pi\:\mathrm{with}\:{n}\in\mathbb{Z} \\ $$

Commented by benjo last updated on 24/Dec/19

great sir...

$$\mathrm{great}\:\mathrm{sir}... \\ $$

Commented by mathocean1 last updated on 24/Dec/19

thank you sir...

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com