Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66802 by Rio Michael last updated on 19/Aug/19

given that   f(x) = 3x^3  − 2x^2  + 5x + 7  find  a)  α + β + γ  b) αβγ    c) α^2  + β^2  + γ^2   d) α^3  + β^3  + γ^3   any  solutions  directly?

$${given}\:{that}\: \\ $$$${f}\left({x}\right)\:=\:\mathrm{3}{x}^{\mathrm{3}} \:−\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{7}\:\:{find} \\ $$$$\left.{a}\right)\:\:\alpha\:+\:\beta\:+\:\gamma \\ $$$$\left.{b}\right)\:\alpha\beta\gamma\:\: \\ $$$$\left.{c}\right)\:\alpha^{\mathrm{2}} \:+\:\beta^{\mathrm{2}} \:+\:\gamma^{\mathrm{2}} \\ $$$$\left.{d}\right)\:\alpha^{\mathrm{3}} \:+\:\beta^{\mathrm{3}} \:+\:\gamma^{\mathrm{3}} \\ $$$${any}\:\:{solutions}\:\:{directly}? \\ $$

Commented by mathmax by abdo last updated on 19/Aug/19

f(x)=3(x−α)(x−β)(x−γ)  =3(x^2 −(α+β)x +αβ)(x−γ)   =3(x^3 −γx^2 −(α+β)x^2 +((α+β)γ x   +αβx −αβγ  =3(x^3 −(α+β+γ)x^2  +(αβ +αγ +βγ)x−αβγ)  =3x^3 −3(α+β+γ)x^2  +3(αβ +αγ +βγ)x −3αβγ  =3x^3 −2x^2  +5x +7 ⇒α+β+γ =(2/3)  and αβ +αγ +βγ =−(2/3)  and αβγ =−(7/3)  c) α^2  +β^2  +γ^2 =(α+β +γ)^2 −2(αβ +αγ +βγ)  =((2/3))^2 −2(((−2)/3)) =(4/9) +(4/3) =((16)/9)  d)(x+y+z)^(3 ) =(x+y)^3  +3(x+y)^2 z +3(x+y)z^2  +z^3   =x^3  +3x^2 y +3xy^2  +y^3  +3(x^2  +2xy +y^2 )z +3xz^2  +3yz^2  +z^3   =x^3  +y^3  +z^3  + 3x^2 y+3xy^2  +3x^2 z +6xyz  +3y^2 z +3xz^2  +3yz^2   =x^3  +y^3  +z^3  +3(x^2 y +x^2 z  +y^2 x +y^2 z +z^2 x +z^2 y)+6xyz ⇒  x^3  +y^3  +z^3 =(x+y+z)^3 −3(x^2 y+x^2 z +y^2 x +y^2 z+z^2 x +z^2 y)−6xyz  =.....

$${f}\left({x}\right)=\mathrm{3}\left({x}−\alpha\right)\left({x}−\beta\right)\left({x}−\gamma\right) \\ $$$$=\mathrm{3}\left({x}^{\mathrm{2}} −\left(\alpha+\beta\right){x}\:+\alpha\beta\right)\left({x}−\gamma\right)\: \\ $$$$=\mathrm{3}\left({x}^{\mathrm{3}} −\gamma{x}^{\mathrm{2}} −\left(\alpha+\beta\right){x}^{\mathrm{2}} +\left(\left(\alpha+\beta\right)\gamma\:{x}\:\:\:+\alpha\beta{x}\:−\alpha\beta\gamma\right.\right. \\ $$$$=\mathrm{3}\left({x}^{\mathrm{3}} −\left(\alpha+\beta+\gamma\right){x}^{\mathrm{2}} \:+\left(\alpha\beta\:+\alpha\gamma\:+\beta\gamma\right){x}−\alpha\beta\gamma\right) \\ $$$$=\mathrm{3}{x}^{\mathrm{3}} −\mathrm{3}\left(\alpha+\beta+\gamma\right){x}^{\mathrm{2}} \:+\mathrm{3}\left(\alpha\beta\:+\alpha\gamma\:+\beta\gamma\right){x}\:−\mathrm{3}\alpha\beta\gamma \\ $$$$=\mathrm{3}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{5}{x}\:+\mathrm{7}\:\Rightarrow\alpha+\beta+\gamma\:=\frac{\mathrm{2}}{\mathrm{3}}\:\:{and}\:\alpha\beta\:+\alpha\gamma\:+\beta\gamma\:=−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${and}\:\alpha\beta\gamma\:=−\frac{\mathrm{7}}{\mathrm{3}} \\ $$$$\left.{c}\right)\:\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \:+\gamma^{\mathrm{2}} =\left(\alpha+\beta\:+\gamma\right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta\:+\alpha\gamma\:+\beta\gamma\right) \\ $$$$=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{−\mathrm{2}}{\mathrm{3}}\right)\:=\frac{\mathrm{4}}{\mathrm{9}}\:+\frac{\mathrm{4}}{\mathrm{3}}\:=\frac{\mathrm{16}}{\mathrm{9}} \\ $$$$\left.{d}\right)\left({x}+{y}+{z}\right)^{\mathrm{3}\:} =\left({x}+{y}\right)^{\mathrm{3}} \:+\mathrm{3}\left({x}+{y}\right)^{\mathrm{2}} {z}\:+\mathrm{3}\left({x}+{y}\right){z}^{\mathrm{2}} \:+{z}^{\mathrm{3}} \\ $$$$={x}^{\mathrm{3}} \:+\mathrm{3}{x}^{\mathrm{2}} {y}\:+\mathrm{3}{xy}^{\mathrm{2}} \:+{y}^{\mathrm{3}} \:+\mathrm{3}\left({x}^{\mathrm{2}} \:+\mathrm{2}{xy}\:+{y}^{\mathrm{2}} \right){z}\:+\mathrm{3}{xz}^{\mathrm{2}} \:+\mathrm{3}{yz}^{\mathrm{2}} \:+{z}^{\mathrm{3}} \\ $$$$={x}^{\mathrm{3}} \:+{y}^{\mathrm{3}} \:+{z}^{\mathrm{3}} \:+\:\mathrm{3}{x}^{\mathrm{2}} {y}+\mathrm{3}{xy}^{\mathrm{2}} \:+\mathrm{3}{x}^{\mathrm{2}} {z}\:+\mathrm{6}{xyz}\:\:+\mathrm{3}{y}^{\mathrm{2}} {z}\:+\mathrm{3}{xz}^{\mathrm{2}} \:+\mathrm{3}{yz}^{\mathrm{2}} \\ $$$$={x}^{\mathrm{3}} \:+{y}^{\mathrm{3}} \:+{z}^{\mathrm{3}} \:+\mathrm{3}\left({x}^{\mathrm{2}} {y}\:+{x}^{\mathrm{2}} {z}\:\:+{y}^{\mathrm{2}} {x}\:+{y}^{\mathrm{2}} {z}\:+{z}^{\mathrm{2}} {x}\:+{z}^{\mathrm{2}} {y}\right)+\mathrm{6}{xyz}\:\Rightarrow \\ $$$${x}^{\mathrm{3}} \:+{y}^{\mathrm{3}} \:+{z}^{\mathrm{3}} =\left({x}+{y}+{z}\right)^{\mathrm{3}} −\mathrm{3}\left({x}^{\mathrm{2}} {y}+{x}^{\mathrm{2}} {z}\:+{y}^{\mathrm{2}} {x}\:+{y}^{\mathrm{2}} {z}+{z}^{\mathrm{2}} {x}\:+{z}^{\mathrm{2}} {y}\right)−\mathrm{6}{xyz} \\ $$$$=..... \\ $$

Commented by Rio Michael last updated on 20/Aug/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 20/Aug/19

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Commented by Kunal12588 last updated on 20/Aug/19

α^3 +β^3 +γ^3 =(α+β)^3 −3αβ(α+β)+γ^3   =(α+β)^3 +γ^3 −3αβ(α+β)  =(α+β+γ)[(α+β)^2 −(α+β)γ+γ^2 ]−3αβ(α+β+γ)+3αβγ  =(α+β+γ)(α^2 +β^2 +2αβ−αγ−βγ+γ^2 −3αβ)+3αβγ  α^3 +β^3 +γ^3 =(α+β+γ)(α^2 +β^2 +γ^2 −αβ−βγ−γα)+3αβγ  α^3 +β^3 +γ^3 =(α+β+γ)^3 −3(α+β+γ)(αβ+βγ+γα))+3αβγ  α^3 +β^3 +γ^3 =(1/2)(α+β+γ)((α−β)^2 +(β−γ)^2 +(γ−α)^2 )+3αβγ  these formulas can be used to solve  α^3 +β^3 +γ^3 =(2/3)(−((26)/9)−(5/3))−7=((−82−189)/(27))=((−271)/(27))

$$\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} =\left(\alpha+\beta\right)^{\mathrm{3}} −\mathrm{3}\alpha\beta\left(\alpha+\beta\right)+\gamma^{\mathrm{3}} \\ $$$$=\left(\alpha+\beta\right)^{\mathrm{3}} +\gamma^{\mathrm{3}} −\mathrm{3}\alpha\beta\left(\alpha+\beta\right) \\ $$$$=\left(\alpha+\beta+\gamma\right)\left[\left(\alpha+\beta\right)^{\mathrm{2}} −\left(\alpha+\beta\right)\gamma+\gamma^{\mathrm{2}} \right]−\mathrm{3}\alpha\beta\left(\alpha+\beta+\gamma\right)+\mathrm{3}\alpha\beta\gamma \\ $$$$=\left(\alpha+\beta+\gamma\right)\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\mathrm{2}\alpha\beta−\alpha\gamma−\beta\gamma+\gamma^{\mathrm{2}} −\mathrm{3}\alpha\beta\right)+\mathrm{3}\alpha\beta\gamma \\ $$$$\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} =\left(\alpha+\beta+\gamma\right)\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} −\alpha\beta−\beta\gamma−\gamma\alpha\right)+\mathrm{3}\alpha\beta\gamma \\ $$$$\left.\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} =\left(\alpha+\beta+\gamma\right)^{\mathrm{3}} −\mathrm{3}\left(\alpha+\beta+\gamma\right)\left(\alpha\beta+\beta\gamma+\gamma\alpha\right)\right)+\mathrm{3}\alpha\beta\gamma \\ $$$$\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\alpha+\beta+\gamma\right)\left(\left(\alpha−\beta\right)^{\mathrm{2}} +\left(\beta−\gamma\right)^{\mathrm{2}} +\left(\gamma−\alpha\right)^{\mathrm{2}} \right)+\mathrm{3}\alpha\beta\gamma \\ $$$${these}\:{formulas}\:{can}\:{be}\:{used}\:{to}\:{solve} \\ $$$$\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} =\frac{\mathrm{2}}{\mathrm{3}}\left(−\frac{\mathrm{26}}{\mathrm{9}}−\frac{\mathrm{5}}{\mathrm{3}}\right)−\mathrm{7}=\frac{−\mathrm{82}−\mathrm{189}}{\mathrm{27}}=\frac{−\mathrm{271}}{\mathrm{27}} \\ $$

Commented by mathmax by abdo last updated on 20/Aug/19

thank you kunal for completing...

$${thank}\:{you}\:{kunal}\:{for}\:{completing}... \\ $$

Commented by Kunal12588 last updated on 20/Aug/19

pleasure sir...  btw αβ+βγ+γα=(5/3)

$${pleasure}\:{sir}... \\ $$$${btw}\:\alpha\beta+\beta\gamma+\gamma\alpha=\frac{\mathrm{5}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com