Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 72718 by Rio Michael last updated on 01/Nov/19

given that    a ≡ b(mod n)   show that a^k  ≡ b^k  (mod n)

$${given}\:{that}\: \\ $$$$\:{a}\:\equiv\:{b}\left({mod}\:{n}\right)\: \\ $$$${show}\:{that}\:{a}^{{k}} \:\equiv\:{b}^{{k}} \:\left({mod}\:{n}\right) \\ $$

Commented by prof Abdo imad last updated on 01/Nov/19

⇒a−b=qn ⇒a=qn+b ⇒a^k =(qn+b)^k   =Σ_(p=0) ^k  C_k ^p  (qn)^p b^(k−p) =b^k  +Σ_(p=1) ^k  C_k ^p (qn)^p  b^(k−p)   a^k −b^k  =n Σ_(p=1) ^k  C_p ^k  q^p n^(p−1) b^(k−p)    ≡0[n] ⇒  a^k ≡b^k [n].

$$\Rightarrow{a}−{b}={qn}\:\Rightarrow{a}={qn}+{b}\:\Rightarrow{a}^{{k}} =\left({qn}+{b}\right)^{{k}} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{{k}} \:{C}_{{k}} ^{{p}} \:\left({qn}\right)^{{p}} {b}^{{k}−{p}} ={b}^{{k}} \:+\sum_{{p}=\mathrm{1}} ^{{k}} \:{C}_{{k}} ^{{p}} \left({qn}\right)^{{p}} \:{b}^{{k}−{p}} \\ $$$${a}^{{k}} −{b}^{{k}} \:={n}\:\sum_{{p}=\mathrm{1}} ^{{k}} \:{C}_{{p}} ^{{k}} \:{q}^{{p}} {n}^{{p}−\mathrm{1}} {b}^{{k}−{p}} \:\:\:\equiv\mathrm{0}\left[{n}\right]\:\Rightarrow \\ $$$${a}^{{k}} \equiv{b}^{{k}} \left[{n}\right]. \\ $$$$ \\ $$

Commented by Rio Michael last updated on 01/Nov/19

thank you

$${thank}\:{you} \\ $$

Commented by mathmax by abdo last updated on 01/Nov/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com