Previous in Probability and Statistics Next in Probability and Statistics | ||
Question Number 192118 by Red1ight last updated on 08/May/23 | ||
$$\mathrm{given}\:\mathrm{points}\:\left({a},{b}\right)\:\mathrm{where}\:{a},{b}\:\in\mathbb{R} \\ $$$$\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{best}\:\mathrm{fit}\:\mathrm{parabola}\:\mathrm{that}\:\mathrm{go}\:\mathrm{through}\:\mathrm{the}\:\mathrm{origin} \\ $$$$\mathrm{and}\:\mathrm{open}\:\mathrm{downward}\:\left(\mathrm{coefficient}\:\mathrm{of}\:{x}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{negative}\right)? \\ $$ | ||