Previous in Probability and Statistics Next in Probability and Statistics | ||
Question Number 81219 by jagoll last updated on 10/Feb/20 | ||
$${given}\:{a}\:{probability}\: \\ $$$${function}\: \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{3}},\:\mathrm{1}\leqslant{x}\leqslant\mathrm{4}\:{and}\:{f}\left({x}\right)=\mathrm{0} \\ $$$${in}\:{other}\:{x}.\:{find}\:{the}\:{value}\: \\ $$$${of}\:\sigma^{\mathrm{2}\:} \:? \\ $$ | ||
Commented by jagoll last updated on 10/Feb/20 | ||
$${my}\:{way}\:\sigma^{\mathrm{2}} \:=\:\int_{\mathrm{1}} ^{\:\mathrm{4}} \left({x}−\mu\right)^{\mathrm{2}} {f}\left({x}\right){dx} \\ $$$${where}\:\mu=\:\int\:_{\mathrm{1}} ^{\mathrm{4}} \:{xf}\left({x}\right){dx} \\ $$$${it}\:{correct}? \\ $$ | ||
Commented by Joel578 last updated on 10/Feb/20 | ||
$${yes} \\ $$ | ||
Commented by Joel578 last updated on 10/Feb/20 | ||
$${another}\:{formula} \\ $$$$\sigma_{{X}} ^{\mathrm{2}} \:=\:\underset{−\infty} {\overset{\infty} {\int}}\:\left({x}\:−\:\mu\right)^{\mathrm{2}} \:{f}\left({x}\right)\:{dx} \\ $$$$\:\:\:\:\:\:\:=\:\underset{−\infty} {\overset{\infty} {\int}}\:\left({x}^{\mathrm{2}} \:−\:\mathrm{2}{x}\mu\:+\:\mu^{\mathrm{2}} \right){f}\left({x}\right)\:{dx} \\ $$$$\:\:\:\:\:\:\:=\:\underset{−\infty} {\overset{\infty} {\int}}{x}^{\mathrm{2}} \:{f}\left({x}\right)\:{dx}\:−\:\mathrm{2}\mu\:\underset{−\infty} {\overset{\infty} {\int}}{x}\:{f}\left({x}\right)\:{dx}\:+\:\mu^{\mathrm{2}} \:\underset{−\infty} {\overset{\infty} {\int}}{f}\left({x}\right)\:{dx} \\ $$$$\:\:\:\:\:\:\:=\:\underset{−\infty} {\overset{\infty} {\int}}{x}^{\mathrm{2}} \:{f}\left({x}\right)\:{dx}\:−\:\mathrm{2}\mu\:.\:\mu\:+\:\mu^{\mathrm{2}} \:.\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:=\:\underset{−\infty} {\overset{\infty} {\int}}\:{x}^{\mathrm{2}} \:{f}\left({x}\right)\:{dx}\:−\:\mu^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:=\:{E}\left[{X}^{\mathrm{2}} \right]\:−\:\mu^{\mathrm{2}} \\ $$ | ||
Commented by jagoll last updated on 10/Feb/20 | ||
$${o}\:{yes}\:{thank}\:{you} \\ $$ | ||
Answered by Joel578 last updated on 10/Feb/20 | ||
$${f}_{{X}} \left({x}\right)\:=\:\begin{cases}{\frac{\mathrm{1}}{\mathrm{3}}\:\:\:,\:\mathrm{1}\:\leqslant\:{x}\:\leqslant\:\mathrm{4}}\\{\:\mathrm{0}\:\:\:\:\:,\:\mathrm{elsewhere}}\end{cases} \\ $$$$ \\ $$$${E}\left[{X}\right]\:=\:\mu\:=\:\:\underset{−\infty} {\overset{\infty} {\int}}\:{x}\:{f}\left({x}\right)\:{dx}\:=\:\underset{\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:{x}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:{dx}\:=\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$${E}\left[{X}^{\mathrm{2}} \right]\:=\:\underset{−\infty} {\overset{\infty} {\int}}{x}^{\mathrm{2}} \:{f}\left({x}\right)\:{dx}\:=\:\underset{\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:{x}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:{dx}\:=\:\mathrm{7} \\ $$$$ \\ $$$$\sigma_{{X}} ^{\mathrm{2}} \:=\:{E}\left[{X}^{\mathrm{2}} \right]\:−\:\mu^{\mathrm{2}} \:=\:\mathrm{7}\:−\:\frac{\mathrm{25}}{\mathrm{4}}\:=\:\frac{\mathrm{3}}{\mathrm{4}}\: \\ $$ | ||