Question Number 476 by 123456 last updated on 11/Jan/15 | ||
$${given}\:{a}_{{n}} \:{and}\:{b}_{{n}} \:{two}\:{real}\:{sequence} \\ $$$${can}\:{a}\:{serie}\:\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}{a}_{{n}} \:{and}\:\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}{b}_{{n}} \:{diverge} \\ $$$${but} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\left({a}_{{n}} +{b}_{{n}} \right)\:{converge}? \\ $$ | ||
Commented by prakash jain last updated on 11/Jan/15 | ||
$${a}_{{n}} =\mathrm{2}^{{n}} \\ $$$${b}_{{n}} =−\mathrm{2}^{{n}} \\ $$ | ||