Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 33988 by abdo imad last updated on 28/Apr/18

give the algebric form of (1+i)^i .

$${give}\:{the}\:{algebric}\:{form}\:{of}\:\left(\mathrm{1}+{i}\right)^{{i}} . \\ $$

Answered by MJS last updated on 28/Apr/18

(1+i)^i =((√2)e^(i(π/4)) )^i =(e^((ln 2)/2) e^(i(π/4)) )^i =(e^(((ln 2)/2)+i(π/4)) )^i ==((√2)e^(i(π/4)) )^i   =e^(−(π/4)+i((ln 2)/2)) =e^(−(π/4)) e^(i((ln 2)/2)) =e^(−(π/4)) ((√2))^i   (√2)e^(i(π/4)) =(√2)(cos (π/4)+i sin (π/4))  e^(−(π/4)) e^(i((ln 2)/2)) =e^(−(π/4)) (cos ((ln 2)/2)+i sin ((ln 2)/2))

$$\left(\mathrm{1}+\mathrm{i}\right)^{\mathrm{i}} =\left(\sqrt{\mathrm{2}}\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \right)^{\mathrm{i}} =\left(\mathrm{e}^{\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}} \mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \right)^{\mathrm{i}} =\left(\mathrm{e}^{\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}+\mathrm{i}\frac{\pi}{\mathrm{4}}} \right)^{\mathrm{i}} ==\left(\sqrt{\mathrm{2}}\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \right)^{\mathrm{i}} \\ $$$$=\mathrm{e}^{−\frac{\pi}{\mathrm{4}}+\mathrm{i}\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}} =\mathrm{e}^{−\frac{\pi}{\mathrm{4}}} \mathrm{e}^{\mathrm{i}\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}} =\mathrm{e}^{−\frac{\pi}{\mathrm{4}}} \left(\sqrt{\mathrm{2}}\right)^{\mathrm{i}} \\ $$$$\sqrt{\mathrm{2}}\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} =\sqrt{\mathrm{2}}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{4}}+\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\right) \\ $$$$\mathrm{e}^{−\frac{\pi}{\mathrm{4}}} \mathrm{e}^{\mathrm{i}\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}} =\mathrm{e}^{−\frac{\pi}{\mathrm{4}}} \left(\mathrm{cos}\:\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}+\mathrm{i}\:\mathrm{sin}\:\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com