Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 216918 by mathocean1 last updated on 24/Feb/25

give a recurrence relation for I_n .  I_n =∫_0 ^1 (x^n /(x+3))dx, ∀n ∈ N.

$${give}\:{a}\:{recurrence}\:{relation}\:{for}\:{I}_{{n}} . \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} }{{x}+\mathrm{3}}{dx},\:\forall{n}\:\in\:\mathbb{N}. \\ $$

Answered by Wuji last updated on 24/Feb/25

I_n =∫_0 ^1 (x^n /(x+3))dx ,∀n∈N  (x^n =x^(n−1) x=x^(n−1) ((x+3)−3)  (x^n /(x+3))=((x^(n−1) ((x+3)−3))/((x+3)))=x^(n−1) −3(x^(n−1) /(x+3))  I_n =∫_0 ^1 (x^n /(x+3))dx =∫_0 ^1 (x^(n−1) −3(x^(n−1) /(x+3)))dx  ∫_0 ^1 x^(n−1) dx=(1/n)    , ∫_0 ^1 (x^(n−1) /(x−3))dx=I_(n−1)   I_n =(1/n)−3I_(n−1)

$$\mathrm{I}_{\mathrm{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{x}+\mathrm{3}}\mathrm{dx}\:,\forall\mathrm{n}\in\mathbb{N} \\ $$$$\left(\mathrm{x}^{\mathrm{n}} =\mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{x}=\mathrm{x}^{\mathrm{n}−\mathrm{1}} \left(\left(\mathrm{x}+\mathrm{3}\right)−\mathrm{3}\right)\right. \\ $$$$\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{x}+\mathrm{3}}=\frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}} \left(\left(\mathrm{x}+\mathrm{3}\right)−\mathrm{3}\right)}{\left(\mathrm{x}+\mathrm{3}\right)}=\mathrm{x}^{\mathrm{n}−\mathrm{1}} −\mathrm{3}\frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\mathrm{x}+\mathrm{3}} \\ $$$$\mathrm{I}_{\mathrm{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{x}+\mathrm{3}}\mathrm{dx}\:=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{x}^{\mathrm{n}−\mathrm{1}} −\mathrm{3}\frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\mathrm{x}+\mathrm{3}}\right)\mathrm{dx} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{dx}=\frac{\mathrm{1}}{\mathrm{n}}\:\:\:\:,\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\mathrm{x}−\mathrm{3}}\mathrm{dx}=\mathrm{I}_{\mathrm{n}−\mathrm{1}} \\ $$$$\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}}−\mathrm{3I}_{\mathrm{n}−\mathrm{1}} \\ $$

Commented by mathocean1 last updated on 24/Feb/25

Thank you sir...

$${Thank}\:{you}\:{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com