Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 92267 by mathmax by abdo last updated on 05/May/20

give ∫_0 ^1  ((ln(1−x))/(1+x))dx at form of serie

$${give}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}{dx}\:{at}\:{form}\:{of}\:{serie} \\ $$

Commented by mathmax by abdo last updated on 07/May/20

we have ln^′ (1−x) =−(1/(1−x)) =−Σ_(n=0) ^∞  x^n  ⇒ln(1−x)=−Σ_(n=0) ^∞  (x^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (x^n /n)  also (1/(1+x)) =Σ_(n=0) ^∞ (−1)^n  x^n  ⇒  ((ln(1−x))/(1+x)) =−Σ_(n=1) ^∞  (x^n /n)×(Σ_(n=0) ^∞  (−1)^n  x^n )  =−Σ_(n=1) ^∞  (x^n /n)−Σ_(n=1) ^∞  (1/n)x^n ×Σ_(n=1) ^∞  (−1)^n  x^n   =−Σ_(n=1) ^∞  (x^n /n)−Σ_(n=1) ^∞  c_n x^n      with c_n =Σ_(i+j=n)  a_i  b_j   =Σ_(i=1) ^n  a_i b_(n−i)  =Σ_(i=1) ^n  (1/i)(−1)^(n−i)  ⇒  ((ln(1−x))/(1+x)) =−Σ_(n=1) ^∞  (x^n /n)−Σ_(n=1) ^∞  (Σ_(i=1) ^n  (((−1)^(n−i) )/i))x^n  ⇒  ∫_0 ^1  ((ln(1−x))/(1+x))dx =−Σ_(n=1) ^∞   (1/(n(n+1)))−Σ_(n=1) ^∞ (Σ_(i=1) ^n  (((−1)^i )/i))×(((−1)^n )/(n+1))  Σ_(n=1) ^∞  (1/(n(n+1))) =lim_(n→+∞) Σ_(k=1) ^n  (1/(k(k+1)))  =lim_(n→+∞) Σ_(k=1) ^n ((1/k)−(1/(k+1))) =lim_(n→+∞) (1−(1/(n+1))) =1 ⇒  ∫_0 ^1  ((ln(1−x))/(1+x))dx =−1−Σ_(n=1) ^∞  (Σ_(i=1) ^n  (((−1)^i )/i))(((−1)^n )/(n+1))

$${we}\:{have}\:{ln}^{'} \left(\mathrm{1}−{x}\right)\:=−\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} \:\Rightarrow{ln}\left(\mathrm{1}−{x}\right)=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:\:{also}\:\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} \:\Rightarrow \\ $$$$\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}×\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} \right) \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}{x}^{{n}} ×\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}−\sum_{{n}=\mathrm{1}} ^{\infty} \:{c}_{{n}} {x}^{{n}} \:\:\:\:\:{with}\:{c}_{{n}} =\sum_{{i}+{j}={n}} \:{a}_{{i}} \:{b}_{{j}} \\ $$$$=\sum_{{i}=\mathrm{1}} ^{{n}} \:{a}_{{i}} {b}_{{n}−{i}} \:=\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{i}}\left(−\mathrm{1}\right)^{{n}−{i}} \:\Rightarrow \\ $$$$\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}−\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{n}−{i}} }{{i}}\right){x}^{{n}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}{dx}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)}−\sum_{{n}=\mathrm{1}} ^{\infty} \left(\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{i}} }{{i}}\right)×\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)}\:={lim}_{{n}\rightarrow+\infty} \sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)} \\ $$$$={lim}_{{n}\rightarrow+\infty} \sum_{{k}=\mathrm{1}} ^{{n}} \left(\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+\mathrm{1}}\right)\:={lim}_{{n}\rightarrow+\infty} \left(\mathrm{1}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)\:=\mathrm{1}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}{dx}\:=−\mathrm{1}−\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{i}} }{{i}}\right)\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com