Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 134713 by bramlexs22 last updated on 06/Mar/21

geometry  All the edges of a regular square pyramid have a length of 8. What is the volume?

$$\mathrm{geometry} \\ $$All the edges of a regular square pyramid have a length of 8. What is the volume?

Answered by john_santu last updated on 06/Mar/21

Reguler square pyramid already  a regular quadrilateral.  An equilateral triangle is two of  mirrored acroos the long leg  30°−60°−90° right the triangles  with sides in the ratio 1 : (√3) : 2 ,   The altitude of face triangle is  ((√3)/2) × 8 = 4(√3) . That triangle is   tilted in so the top vertex is over   the center of square 4 units from the  edge : h^2  + 4^2  = (4(√3))^2 ⇒h=4(√2)  so the Volume = (1/3)A.h = (1/3)×8^2  × 4(√2)  Vol = ((256(√2) )/3) units^3  •

$$\mathcal{R}{eguler}\:{square}\:{pyramid}\:{already} \\ $$$${a}\:{regular}\:{quadrilateral}. \\ $$$${An}\:{equilateral}\:{triangle}\:{is}\:{two}\:{of} \\ $$$${mirrored}\:{acroos}\:{the}\:{long}\:{leg} \\ $$$$\mathrm{30}°−\mathrm{60}°−\mathrm{90}°\:{right}\:{the}\:{triangles} \\ $$$${with}\:{sides}\:{in}\:{the}\:{ratio}\:\mathrm{1}\::\:\sqrt{\mathrm{3}}\::\:\mathrm{2}\:,\: \\ $$$${The}\:{altitude}\:{of}\:{face}\:{triangle}\:{is} \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:×\:\mathrm{8}\:=\:\mathrm{4}\sqrt{\mathrm{3}}\:.\:{That}\:{triangle}\:{is}\: \\ $$$${tilted}\:{in}\:{so}\:{the}\:{top}\:{vertex}\:{is}\:{over}\: \\ $$$${the}\:{center}\:{of}\:{square}\:\mathrm{4}\:{units}\:{from}\:{the} \\ $$$${edge}\::\:{h}^{\mathrm{2}} \:+\:\mathrm{4}^{\mathrm{2}} \:=\:\left(\mathrm{4}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \Rightarrow{h}=\mathrm{4}\sqrt{\mathrm{2}} \\ $$$${so}\:{the}\:{Volume}\:=\:\frac{\mathrm{1}}{\mathrm{3}}{A}.{h}\:=\:\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{8}^{\mathrm{2}} \:×\:\mathrm{4}\sqrt{\mathrm{2}} \\ $$$${Vol}\:=\:\frac{\mathrm{256}\sqrt{\mathrm{2}}\:}{\mathrm{3}}\:{units}^{\mathrm{3}} \:\bullet\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com