Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 35513 by Rio Mike last updated on 19/May/18

g(x)= 6x^2 − 5ax + b^2   given that g(x) has only two roots  and are (x−1) and (x−2)  find the value of a and b.Using  (x−1) as a root detemine the   extend to which (x−2) is a root  (occurance as a root).

$${g}\left({x}\right)=\:\mathrm{6}{x}^{\mathrm{2}} −\:\mathrm{5}{ax}\:+\:{b}^{\mathrm{2}} \\ $$$${given}\:{that}\:{g}\left({x}\right)\:{has}\:{only}\:{two}\:{roots} \\ $$$${and}\:{are}\:\left({x}−\mathrm{1}\right)\:{and}\:\left({x}−\mathrm{2}\right) \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}.{Using} \\ $$$$\left({x}−\mathrm{1}\right)\:{as}\:{a}\:{root}\:{detemine}\:{the}\: \\ $$$${extend}\:{to}\:{which}\:\left({x}−\mathrm{2}\right)\:{is}\:{a}\:{root} \\ $$$$\left({occurance}\:{as}\:{a}\:{root}\right). \\ $$

Answered by Rasheed.Sindhi last updated on 19/May/18

g(x)= 6x^2 − 5ax + b^2     ∵ x−1 is factor  g(1)= 6(1)^2 − 5a(1) + b^2 =0                  b^2 −5a=−6..........A    ∵ x−2 is factor  g(2)= 6(2)^2 − 5a(2) + b^2 =0                 b^2 −10a=24..........B  A−B: 5a=−30⇒a=−6  A⇒b^2 −5(−6)=−6           b^2 =−6−30=−36          b=±6i

$${g}\left({x}\right)=\:\mathrm{6}{x}^{\mathrm{2}} −\:\mathrm{5}{ax}\:+\:{b}^{\mathrm{2}} \\ $$$$\:\:\because\:{x}−\mathrm{1}\:\mathrm{is}\:\mathrm{factor} \\ $$$${g}\left(\mathrm{1}\right)=\:\mathrm{6}\left(\mathrm{1}\right)^{\mathrm{2}} −\:\mathrm{5}{a}\left(\mathrm{1}\right)\:+\:{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}^{\mathrm{2}} −\mathrm{5}{a}=−\mathrm{6}..........\mathrm{A} \\ $$$$\:\:\because\:{x}−\mathrm{2}\:\mathrm{is}\:\mathrm{factor} \\ $$$${g}\left(\mathrm{2}\right)=\:\mathrm{6}\left(\mathrm{2}\right)^{\mathrm{2}} −\:\mathrm{5}{a}\left(\mathrm{2}\right)\:+\:{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}^{\mathrm{2}} −\mathrm{10}{a}=\mathrm{24}..........\mathrm{B} \\ $$$$\mathrm{A}−\mathrm{B}:\:\mathrm{5}{a}=−\mathrm{30}\Rightarrow{a}=−\mathrm{6} \\ $$$$\mathrm{A}\Rightarrow{b}^{\mathrm{2}} −\mathrm{5}\left(−\mathrm{6}\right)=−\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:{b}^{\mathrm{2}} =−\mathrm{6}−\mathrm{30}=−\mathrm{36} \\ $$$$\:\:\:\:\:\:\:\:{b}=\pm\mathrm{6}{i} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com