Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 186503 by mnjuly1970 last updated on 05/Feb/23

     function of , f (x) = ax  + ∣ x ∣ is  one to one               .find    ”    a    ”  .

$$ \\ $$$$\:\:\:{function}\:{of}\:,\:{f}\:\left({x}\right)\:=\:{ax}\:\:+\:\mid\:{x}\:\mid\:{is}\:\:{one}\:{to}\:{one} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:.{find}\:\:\:\:''\:\:\:\:{a}\:\:\:\:''\:\:. \\ $$$$\:\: \\ $$

Commented by Frix last updated on 05/Feb/23

f(x)= { (((a−1)x; x<0)),(((a+1)x; x≥0)) :}  f′(x)= { ((a−1; x<0)),((a+1; x≥0)) :}  f(0)=0  We need  (1) a−1<0∧a+1<0  or  (2) a−1>0∧a+1>0  ⇒  a<−1∨a>1

$${f}\left({x}\right)=\begin{cases}{\left({a}−\mathrm{1}\right){x};\:{x}<\mathrm{0}}\\{\left({a}+\mathrm{1}\right){x};\:{x}\geqslant\mathrm{0}}\end{cases} \\ $$$${f}'\left({x}\right)=\begin{cases}{{a}−\mathrm{1};\:{x}<\mathrm{0}}\\{{a}+\mathrm{1};\:{x}\geqslant\mathrm{0}}\end{cases} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{We}\:\mathrm{need} \\ $$$$\left(\mathrm{1}\right)\:{a}−\mathrm{1}<\mathrm{0}\wedge{a}+\mathrm{1}<\mathrm{0} \\ $$$$\mathrm{or} \\ $$$$\left(\mathrm{2}\right)\:{a}−\mathrm{1}>\mathrm{0}\wedge{a}+\mathrm{1}>\mathrm{0} \\ $$$$\Rightarrow \\ $$$${a}<−\mathrm{1}\vee{a}>\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com