Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 194837 by mr W last updated on 16/Jul/23

for x>0 find the minimum of the  function f(x)=x^3 +(5/x).

$${for}\:{x}>\mathrm{0}\:{find}\:{the}\:{minimum}\:{of}\:{the} \\ $$$${function}\:{f}\left({x}\right)={x}^{\mathrm{3}} +\frac{\mathrm{5}}{{x}}. \\ $$

Answered by Frix last updated on 16/Jul/23

f′(x)=0  3x^2 −(5/x^2 )=0  x=±((5/3))^(1/4)   f(((5/3))^(1/4) )=4×((5/3))^(3/4)

$${f}'\left({x}\right)=\mathrm{0} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\frac{\mathrm{5}}{{x}^{\mathrm{2}} }=\mathrm{0} \\ $$$${x}=\pm\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$${f}\left(\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \right)=\mathrm{4}×\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} \\ $$

Answered by mr W last updated on 16/Jul/23

an other way:  f(x)=x^3 +(5/(3x))+(5/(3x))+(5/(3x))          ≥4(x^3 ×(5/(3x))×(5/(3x))×(5/(3x)))^(1/4) =4((5/3))^(3/4)   ⇒minimum=4((5/3))^(3/4)   when x^3 =(5/(3x)), i.e. x=((5/3))^(1/4)

$${an}\:{other}\:{way}: \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} +\frac{\mathrm{5}}{\mathrm{3}{x}}+\frac{\mathrm{5}}{\mathrm{3}{x}}+\frac{\mathrm{5}}{\mathrm{3}{x}} \\ $$$$\:\:\:\:\:\:\:\:\geqslant\mathrm{4}\left({x}^{\mathrm{3}} ×\frac{\mathrm{5}}{\mathrm{3}{x}}×\frac{\mathrm{5}}{\mathrm{3}{x}}×\frac{\mathrm{5}}{\mathrm{3}{x}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} =\mathrm{4}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$\Rightarrow{minimum}=\mathrm{4}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$${when}\:{x}^{\mathrm{3}} =\frac{\mathrm{5}}{\mathrm{3}{x}},\:{i}.{e}.\:{x}=\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com