Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143474 by Ghaniy last updated on 14/Jun/21

for all positive integral.,   u_(n+1) =u_n (u_(n−1) ^2 −2)−u_n    u_n =2 and u_1 =2(1/2)  prove that : 3log_2 [u_n ]=2^n −1(−1)^n   where [x] is the integral part of  x

$${for}\:{all}\:{positive}\:{integral}., \\ $$$$\:\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\mathrm{u}_{\mathrm{n}} \left(\mathrm{u}_{\mathrm{n}−\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}\right)−\mathrm{u}_{\mathrm{n}} \\ $$$$\:\mathrm{u}_{\mathrm{n}} =\mathrm{2}\:{and}\:\mathrm{u}_{\mathrm{1}} =\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${prove}\:{that}\::\:\mathrm{3log}_{\mathrm{2}} \left[\mathrm{u}_{\mathrm{n}} \right]=\mathrm{2}^{\mathrm{n}} −\mathrm{1}\left(−\mathrm{1}\right)^{\mathrm{n}} \\ $$$${where}\:\left[\mathrm{x}\right]\:{is}\:{the}\:{integral}\:{part}\:{of}\:\:\mathrm{x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com