Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 57332 by problem solverd last updated on 02/Apr/19

find the value of k such that  k(x^2 +y^2 )+(y−2x+1)(y+2x+3)=0  is a circle hence obtain   the centre and radius of the  resulting circle.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{such}\:\mathrm{that} \\ $$$${k}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\left({y}−\mathrm{2}{x}+\mathrm{1}\right)\left({y}+\mathrm{2}{x}+\mathrm{3}\right)=\mathrm{0} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{hence}\:\mathrm{obtain}\: \\ $$$$\mathrm{the}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{resulting}\:\mathrm{circle}. \\ $$

Commented by mr W last updated on 03/Apr/19

k(x^2 +y^2 )+y^2 −4x^2 +....=0  (k−4)x^2 +(k+1)y^2 +....=0  for the equation of a circle the  coefficients of x^2  and y^2  must be the  same.  k−4=^(?) k+1 ⇒no solution for k  ⇒the given equation can not be a circle!    please recheck the question.

$${k}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+{y}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{2}} +....=\mathrm{0} \\ $$$$\left({k}−\mathrm{4}\right){x}^{\mathrm{2}} +\left({k}+\mathrm{1}\right){y}^{\mathrm{2}} +....=\mathrm{0} \\ $$$${for}\:{the}\:{equation}\:{of}\:{a}\:{circle}\:{the} \\ $$$${coefficients}\:{of}\:{x}^{\mathrm{2}} \:{and}\:{y}^{\mathrm{2}} \:{must}\:{be}\:{the} \\ $$$${same}. \\ $$$${k}−\mathrm{4}\overset{?} {=}{k}+\mathrm{1}\:\Rightarrow{no}\:{solution}\:{for}\:{k} \\ $$$$\Rightarrow{the}\:{given}\:{equation}\:{can}\:{not}\:{be}\:{a}\:{circle}! \\ $$$$ \\ $$$${please}\:{recheck}\:{the}\:{question}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com