Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34862 by a.i msup by abdo last updated on 12/May/18

find the value of  f(x) = ∫_0 ^π    ((cosx)/(1+2sin(2x)))dx

$${find}\:{the}\:{value}\:{of} \\ $$$${f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{cosx}}{\mathrm{1}+\mathrm{2}{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$

Commented by prof Abdo imad last updated on 14/May/18

thank you sir for this remark..i have working  a lot in complexe analysis but i find often  something that we can t  understand and  explain  it s more and more difficult...

$${thank}\:{you}\:{sir}\:{for}\:{this}\:{remark}..{i}\:{have}\:{working} \\ $$$${a}\:{lot}\:{in}\:{complexe}\:{analysis}\:{but}\:{i}\:{find}\:{often} \\ $$$${something}\:{that}\:{we}\:{can}\:{t}\:\:{understand}\:{and} \\ $$$${explain}\:\:{it}\:{s}\:{more}\:{and}\:{more}\:{difficult}... \\ $$

Commented by prof Abdo imad last updated on 12/May/18

∫_(∣z∣=1) ϕ(z)dz  = ((−4π)/(√3)){  Im((√z_1 )  + Im((√z_1 ^− ))}  z_1 = ((√3)/2) −(i/2) = e^(−i(π/6))  ⇒ (√z_1 ) = e^(−i(π/(12)))    ⇒  Im((√z_1 )) = −sin((π/(12)))    and  Im((√z_1 ^− ))= sin((π/(12)))   ∫_(∣z∣=1) ϕ(z)dz =0   ⇒ I =0 .

$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}\:\:=\:\frac{−\mathrm{4}\pi}{\sqrt{\mathrm{3}}}\left\{\:\:{Im}\left(\sqrt{{z}_{\mathrm{1}} }\:\:+\:{Im}\left(\sqrt{\overset{−} {{z}}_{\mathrm{1}} }\right)\right\}\right. \\ $$$${z}_{\mathrm{1}} =\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:−\frac{{i}}{\mathrm{2}}\:=\:{e}^{−{i}\frac{\pi}{\mathrm{6}}} \:\Rightarrow\:\sqrt{{z}_{\mathrm{1}} }\:=\:{e}^{−{i}\frac{\pi}{\mathrm{12}}} \:\:\:\Rightarrow \\ $$$${Im}\left(\sqrt{{z}_{\mathrm{1}} }\right)\:=\:−{sin}\left(\frac{\pi}{\mathrm{12}}\right)\:\:\:\:{and}\:\:{Im}\left(\sqrt{\overset{−} {{z}}_{\mathrm{1}} }\right)=\:{sin}\left(\frac{\pi}{\mathrm{12}}\right) \\ $$$$\:\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}\:=\mathrm{0}\:\:\:\Rightarrow\:{I}\:=\mathrm{0}\:. \\ $$

Commented by MJS last updated on 13/May/18

I can′t follow here:  ((2πi)/(√3))(z_1 ^(1/2) +z_1 ^(−(1/2)) −z_2 ^(1/2) −z_2 ^(−(1/2)) )=...  because  z_1 =((√3)/2)−(1/2)i            (√z_1 )=(((√6)+(√2))/4)−(((√6)−(√2))/4)i            (1/(√z_1 ))=(((√6)+(√2))/4)+(((√6)−(√2))/4)i  z_2 =−((√3)/2)−(1/2)i            (√z_2 )=(((√6)−(√2))/4)−(((√6)+(√2))/4)i            (1/(√z_2 ))=(((√6)−(√2))/4)+(((√6)+(√2))/4)i  so  ((2πi)/(√3))(z_1 ^(1/2) +z_1 ^(−(1/2)) −z_2 ^(1/2) −z_2 ^(−(1/2)) )=((2πi)/(√3))×(√2)  where′s the bug?

$$\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{follow}\:\mathrm{here}: \\ $$$$\frac{\mathrm{2}\pi\mathrm{i}}{\sqrt{\mathrm{3}}}\left({z}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}} +{z}_{\mathrm{1}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} −{z}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{2}}} −{z}_{\mathrm{2}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)=... \\ $$$$\mathrm{because} \\ $$$${z}_{\mathrm{1}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i} \\ $$$$\:\:\:\:\:\:\:\:\:\:\sqrt{{z}_{\mathrm{1}} }=\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}−\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}}\mathrm{i} \\ $$$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\sqrt{{z}_{\mathrm{1}} }}=\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}+\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}}\mathrm{i} \\ $$$${z}_{\mathrm{2}} =−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i} \\ $$$$\:\:\:\:\:\:\:\:\:\:\sqrt{{z}_{\mathrm{2}} }=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}}−\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}\mathrm{i} \\ $$$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\sqrt{{z}_{\mathrm{2}} }}=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}}+\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}\mathrm{i} \\ $$$$\mathrm{so} \\ $$$$\frac{\mathrm{2}\pi\mathrm{i}}{\sqrt{\mathrm{3}}}\left({z}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}} +{z}_{\mathrm{1}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} −{z}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{2}}} −{z}_{\mathrm{2}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)=\frac{\mathrm{2}\pi\mathrm{i}}{\sqrt{\mathrm{3}}}×\sqrt{\mathrm{2}} \\ $$$$\mathrm{where}'\mathrm{s}\:\mathrm{the}\:\mathrm{bug}? \\ $$

Commented by abdo mathsup 649 cc last updated on 13/May/18

sir Mjs no nead to use algebric form because  z_(1 ) =((√3)/2) −(i/2) =e^(−i(π/6))     and (√z_1 )=e^(−i(π/(12)))   z_1 ^(−(1/2))  = z_1 ^−^(1/2)    .....

$${sir}\:{Mjs}\:{no}\:{nead}\:{to}\:{use}\:{algebric}\:{form}\:{because} \\ $$$${z}_{\mathrm{1}\:} =\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:−\frac{{i}}{\mathrm{2}}\:={e}^{−{i}\frac{\pi}{\mathrm{6}}} \:\:\:\:{and}\:\sqrt{{z}_{\mathrm{1}} }={e}^{−{i}\frac{\pi}{\mathrm{12}}} \\ $$$${z}_{\mathrm{1}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} \:=\:\overset{−^{\frac{\mathrm{1}}{\mathrm{2}}} } {{z}}_{\mathrm{1}} \:\:..... \\ $$

Commented by MJS last updated on 14/May/18

z_1 ^(1/2) =conj(z_1 ^(−(1/2)) )=(−z_2 )^(1/2) =conj((−z_2 )^(−(1/2)) )  z_1 =e^(−i(π/6))           z_2 =e^(−i((5π)/6))   (√z_1 )=e^(−i(π/(12)))        (√z_2 )=e^(−i((5π)/(12)))   (1/(√z_1 ))=e^(i(π/(12)))          (1/(√z_2 ))=e^(i((5π)/(12)))

$${z}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{conj}\left({z}_{\mathrm{1}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)=\left(−{z}_{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{conj}\left(\left(−{z}_{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \right) \\ $$$${z}_{\mathrm{1}} =\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{6}}} \:\:\:\:\:\:\:\:\:\:{z}_{\mathrm{2}} =\mathrm{e}^{−\mathrm{i}\frac{\mathrm{5}\pi}{\mathrm{6}}} \\ $$$$\sqrt{{z}_{\mathrm{1}} }=\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{12}}} \:\:\:\:\:\:\:\sqrt{{z}_{\mathrm{2}} }=\mathrm{e}^{−\mathrm{i}\frac{\mathrm{5}\pi}{\mathrm{12}}} \\ $$$$\frac{\mathrm{1}}{\sqrt{{z}_{\mathrm{1}} }}=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{12}}} \:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\sqrt{{z}_{\mathrm{2}} }}=\mathrm{e}^{\mathrm{i}\frac{\mathrm{5}\pi}{\mathrm{12}}} \\ $$

Commented by MJS last updated on 14/May/18

(z_1 ^(1/2)   +z_1 ^(−(1/2))   −z_2 ^(1/2)  −z_2 ^(−(1/2)) )≠(z_1 ^(1/2)  −z_1 ^−^(1/2)     + z_1 ^(−(1/2))   −z_1 ^−^(−(1/2))  )  because z_1 ≠conj(z_2 ) but z_1 =conj(−z_2 )  sorry but I really want to understand how  the residue method works...

$$\left({z}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:+{z}_{\mathrm{1}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\:−{z}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:−{z}_{\mathrm{2}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)\neq\left({z}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:−\overset{−^{\frac{\mathrm{1}}{\mathrm{2}}} } {{z}}_{\mathrm{1}} \:\:\:+\:{z}_{\mathrm{1}} ^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\:−\overset{−^{−\frac{\mathrm{1}}{\mathrm{2}}} } {{z}}_{\mathrm{1}} \right) \\ $$$$\mathrm{because}\:{z}_{\mathrm{1}} \neq\mathrm{conj}\left({z}_{\mathrm{2}} \right)\:\mathrm{but}\:{z}_{\mathrm{1}} =\mathrm{conj}\left(−{z}_{\mathrm{2}} \right) \\ $$$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{I}\:\mathrm{really}\:\mathrm{want}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{how} \\ $$$$\mathrm{the}\:\mathrm{residue}\:\mathrm{method}\:\mathrm{works}... \\ $$

Commented by abdo mathsup 649 cc last updated on 14/May/18

sir Mjs i will delet my method used in this integral  and try another because the consept of residus  is more difficult in some cases....

$${sir}\:{Mjs}\:{i}\:{will}\:{delet}\:{my}\:{method}\:{used}\:{in}\:{this}\:{integral} \\ $$$${and}\:{try}\:{another}\:{because}\:{the}\:{consept}\:{of}\:{residus} \\ $$$${is}\:{more}\:{difficult}\:{in}\:{some}\:{cases}.... \\ $$

Commented by MJS last updated on 14/May/18

Sir, I can′t say if your method is right or  wrong, I′m just trying to follow and  hopefully understand what you′re doing.  I believe you′re very much better in these  things than I am, since I had been studying  maths about 25 years ago and I have forgotten  many things... I′ll be truly thankful for any  explanation you give in this or another case

$$\mathrm{Sir},\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{say}\:\mathrm{if}\:\mathrm{your}\:\mathrm{method}\:\mathrm{is}\:\mathrm{right}\:\mathrm{or} \\ $$$$\mathrm{wrong},\:\mathrm{I}'\mathrm{m}\:\mathrm{just}\:\mathrm{trying}\:\mathrm{to}\:\mathrm{follow}\:\mathrm{and} \\ $$$$\mathrm{hopefully}\:\mathrm{understand}\:\mathrm{what}\:\mathrm{you}'\mathrm{re}\:\mathrm{doing}. \\ $$$$\mathrm{I}\:\mathrm{believe}\:\mathrm{you}'\mathrm{re}\:\mathrm{very}\:\mathrm{much}\:\mathrm{better}\:\mathrm{in}\:\mathrm{these} \\ $$$$\mathrm{things}\:\mathrm{than}\:\mathrm{I}\:\mathrm{am},\:\mathrm{since}\:\mathrm{I}\:\mathrm{had}\:\mathrm{been}\:\mathrm{studying} \\ $$$$\mathrm{maths}\:\mathrm{about}\:\mathrm{25}\:\mathrm{years}\:\mathrm{ago}\:\mathrm{and}\:\mathrm{I}\:\mathrm{have}\:\mathrm{forgotten} \\ $$$$\mathrm{many}\:\mathrm{things}...\:\mathrm{I}'\mathrm{ll}\:\mathrm{be}\:\mathrm{truly}\:\mathrm{thankful}\:\mathrm{for}\:\mathrm{any} \\ $$$$\mathrm{explanation}\:\mathrm{you}\:\mathrm{give}\:\mathrm{in}\:\mathrm{this}\:\mathrm{or}\:\mathrm{another}\:\mathrm{case} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 12/May/18

let k=tanx   dk=sec^2 xdx  I′=∫((cosx)/(1+4sinxcosx))  =∫((cosx)/(1+4tanx.cos^2 x))dx  =∫((cosx)/(cos^2 x(sec^2 x+4tanx)))dx  =∫((sec^2 x dx)/(secx(1+tan^2 x+4tanx)))  =∫(dk/(((√(1+k^2 )))(1+k^2 +4k)))  contd

$${let}\:{k}={tanx}\:\:\:{dk}={sec}^{\mathrm{2}} {xdx} \\ $$$${I}'=\int\frac{{cosx}}{\mathrm{1}+\mathrm{4}{sinxcosx}} \\ $$$$=\int\frac{{cosx}}{\mathrm{1}+\mathrm{4}{tanx}.{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$=\int\frac{{cosx}}{{cos}^{\mathrm{2}} {x}\left({sec}^{\mathrm{2}} {x}+\mathrm{4}{tanx}\right)}{dx} \\ $$$$=\int\frac{{sec}^{\mathrm{2}} {x}\:{dx}}{{secx}\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}+\mathrm{4}{tanx}\right)} \\ $$$$=\int\frac{{dk}}{\left(\sqrt{\left.\mathrm{1}+{k}^{\mathrm{2}} \right)}\left(\mathrm{1}+{k}^{\mathrm{2}} +\mathrm{4}{k}\right)\right.} \\ $$$${contd} \\ $$

Answered by math1967 last updated on 12/May/18

2I=∫_0 ^π ((cosx)/(1+2sin(2x)))dx +∫_0 ^π ((cos(π−x))/(1+2sin(π−2x)))dx  =∫_0 ^π ((cosx)/(1+2sin(2x)))dx −∫_0 ^π ((cosx)/(1+2sin(2x)))dx  =0

$$\mathrm{2}{I}=\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{cosx}}{\mathrm{1}+\mathrm{2}{sin}\left(\mathrm{2}{x}\right)}{dx}\:+\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{cos}\left(\pi−{x}\right)}{\mathrm{1}+\mathrm{2}{sin}\left(\pi−\mathrm{2}{x}\right)}{dx} \\ $$$$=\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{cosx}}{\mathrm{1}+\mathrm{2}{sin}\left(\mathrm{2}{x}\right)}{dx}\:−\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{cosx}}{\mathrm{1}+\mathrm{2}{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$$$=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com