All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 66065 by mathmax by abdo last updated on 08/Aug/19
findthevalueofUn=∫−∞+∞e−nx2sin(x2−2x)dxfindnatureoftheserieΣUnandΣe−n2Un
Commented by mathmax by abdo last updated on 09/Aug/19
wehavex2−2x=x2−2x+1−1=(x−1)2−1changementx−1=tgiveUn=∫−∞+∞e−n(t+1)2sin(t2−1)dt=Im(∫−∞+∞e−n(t+1)2+i(t2−1)dt)=Im(Wn)∫−∞+∞e−n(t+1)2+i(t2−1)dt=∫−∞+∞e−n(t2+2t+1)+it2−idt=e−i∫−∞+∞e−(n−i)t2−2nt−ndt=e−(n+i)∫−∞+∞e−{(n−it)2+2nt}dt=e−(n+i)∫−∞+∞e−{(n−it)2+2nn−in−it+(nn−i)2−n2n−i}dt=e−(n+i)∫−∞+∞e−{n−it+nn−i}2+n2n−idt(ch.n−it+nn−i=v=en2n−i−(n+i)∫−∞+∞e−v2dvn−i=π1n−ien2−(n2−i2)n−i=πn−ie−1n−i=πn−ie−n+in2+1n−i=1+n2eiarctan(−1n)=1+n2e−iarctan(1n)⇒n−i=(1+n2)14e−i2arctan(1n)⇒Wn=π(1+n2)−14ei2arctan(1n)e−nn2+1e−in2+1=π(n2+1)−14e−nn2+1ei(12arctan(1n)−1n2+1)⇒Un=π(n2+1)−14e−nn2+1sin(12arctan(1n)−1n2+1)withU0=πsin(π4−1)
2)wehave∣Un∣⩽π(n2+1)−14e−nn2+1=vntheserieΣvnconverges⇒ΣUnconverges.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com