Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66065 by mathmax by abdo last updated on 08/Aug/19

find the value of U_n =∫_(−∞) ^(+∞) e^(−nx^2 ) sin(x^2 −2x)dx  find nature of the serie Σ U_n  and Σe^(−n^2 ) U_n

findthevalueofUn=+enx2sin(x22x)dxfindnatureoftheserieΣUnandΣen2Un

Commented by mathmax by abdo last updated on 09/Aug/19

we have x^2 −2x =x^2 −2x +1−1 =(x−1)^2 −1 changement  x−1 =t give U_n =∫_(−∞) ^(+∞)  e^(−n(t+1)^2 ) sin(t^2 −1)dt  =Im (∫_(−∞) ^(+∞)   e^(−n(t+1)^2 +i(t^2 −1)) dt) =Im(W_n )  ∫_(−∞) ^(+∞)   e^(−n(t+1)^2  +i(t^2 −1)) dt =∫_(−∞) ^(+∞)  e^(−n(t^2  +2t+1)+it^2 −i) dt  =e^(−i)  ∫_(−∞) ^(+∞)   e^(−(n−i)t^2  −2nt −n) dt  =e^(−(n+i))  ∫_(−∞) ^(+∞)  e^(−{((√(n−i))t)^2  +2nt}) dt  =e^(−(n+i))  ∫_(−∞) ^(+∞)   e^(−{  ((√(n−i))t)^2  +2(n/(√(n−i)))(√(n−i))t  +((n/(√(n−i))))^2 −(n^2 /(n−i))}) dt  =e^(−(n+i))  ∫_(−∞) ^(+∞)  e^(−{(√(n−i))t +(n/(√(n−i)))}^2  +(n^2 /(n−i))) dt   (ch. (√(n−i))t +(n/(√(n−i))) =v  =e^((n^2 /(n−i))−(n+i))   ∫_(−∞) ^(+∞)   e^(−v^2 )   (dv/(√(n−i))) =(√π)(1/(√(n−i))) e^((n^2 −(n^2 −i^2 ))/(n−i))   =((√π)/(√(n−i))) e^(−(1/(n−i)))  =((√π)/(√(n−i))) e^(−((n+i)/(n^2  +1)))   n−i =(√(1+n^2 )) e^(i arctan(((−1)/n)))  =(√(1+n^2 ))e^(−iarctan((1/n)))  ⇒  (√(n−i)) =(1+n^2 )^(1/4) e^(−(i/2)arctan((1/n)))  ⇒  W_n =(√π)(1+n^2 )^(−(1/4))  e^((i/2)arctan((1/n)))  e^(−(n/(n^2  +1)))  e^(−(i/(n^2  +1)))   =(√π)(n^2  +1)^(−(1/4)) e^(−(n/(n^2  +1)))   e^(i((1/2)arctan((1/n))−(1/(n^2  +1))))  ⇒  U_n =(√π)(n^2  +1)^(−(1/4)) e^(−(n/(n^2  +1)))  sin((1/2)arctan((1/n))−(1/(n^2  +1)))with  U_0 =(√π)sin((π/4) −1)

wehavex22x=x22x+11=(x1)21changementx1=tgiveUn=+en(t+1)2sin(t21)dt=Im(+en(t+1)2+i(t21)dt)=Im(Wn)+en(t+1)2+i(t21)dt=+en(t2+2t+1)+it2idt=ei+e(ni)t22ntndt=e(n+i)+e{(nit)2+2nt}dt=e(n+i)+e{(nit)2+2nninit+(nni)2n2ni}dt=e(n+i)+e{nit+nni}2+n2nidt(ch.nit+nni=v=en2ni(n+i)+ev2dvni=π1nien2(n2i2)ni=πnie1ni=πnien+in2+1ni=1+n2eiarctan(1n)=1+n2eiarctan(1n)ni=(1+n2)14ei2arctan(1n)Wn=π(1+n2)14ei2arctan(1n)enn2+1ein2+1=π(n2+1)14enn2+1ei(12arctan(1n)1n2+1)Un=π(n2+1)14enn2+1sin(12arctan(1n)1n2+1)withU0=πsin(π41)

Commented by mathmax by abdo last updated on 09/Aug/19

2)we have ∣U_n ∣≤(√π)(n^2  +1)^(−(1/4))  e^(−(n/(n^2  +1)))    =v_n   the serie Σv_n  converges ⇒Σ U_n  converges.

2)wehaveUn∣⩽π(n2+1)14enn2+1=vntheserieΣvnconvergesΣUnconverges.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com