Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157989 by mnjuly1970 last updated on 30/Oct/21

   find the value of :       Max_( x∈ R)  ( (sin(x)+(√3) cos(x)+1)^( 2) =?

$$\: \\ $$$${find}\:{the}\:{value}\:{of}\:: \\ $$$$\: \\ $$$$\:\:\mathrm{Max}_{\:{x}\in\:\mathbb{R}} \:\left(\:\left(\mathrm{sin}\left({x}\right)+\sqrt{\mathrm{3}}\:{cos}\left({x}\right)+\mathrm{1}\right)^{\:\mathrm{2}} =?\right. \\ $$$$ \\ $$

Commented by cortano last updated on 30/Oct/21

f(x)=(sin (x)+(√3) cos (x)+1)^2   f(x)=(2 ((1/2)sin x+((√3)/2) cos x)+1)^2   f(x)=(2cos (x−(π/6))+1)^2   max f(x)= 9

$${f}\left({x}\right)=\left(\mathrm{sin}\:\left({x}\right)+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\left({x}\right)+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${f}\left({x}\right)=\left(\mathrm{2}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:{x}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{cos}\:{x}\right)+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${f}\left({x}\right)=\left(\mathrm{2cos}\:\left({x}−\frac{\pi}{\mathrm{6}}\right)+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${max}\:{f}\left({x}\right)=\:\mathrm{9} \\ $$

Commented by mnjuly1970 last updated on 30/Oct/21

thanks alot  sir

$${thanks}\:{alot}\:\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com