Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 165262 by mkam last updated on 28/Jan/22

find the sum Σ_(n=1) ^∞  ((1/2))^n  + i ( (1/3) )^n

$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{sum}}\:\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\boldsymbol{{n}}} \:+\:\boldsymbol{{i}}\:\left(\:\frac{\mathrm{1}}{\mathrm{3}}\:\right)^{\boldsymbol{{n}}} \: \\ $$

Answered by Mathspace last updated on 28/Jan/22

Σ_(n=1) ^∞ ((1/2))^n +i((1/3))^n }=Σ_(n=0) ^∞ ((1/2))^n −1  +iΣ_(n=0) ^∞ ((1/3))^n −i  =(1/(1−(1/2)))−1 +i(1/(1−(1/3))) −i  =1+i(3/2)−i=1+i((3/2)−1)  =1+(1/2)i

$$\left.\sum_{{n}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} +{i}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} \right\}=\sum_{{n}=\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} −\mathrm{1} \\ $$$$+{i}\sum_{{n}=\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} −{i} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}−\mathrm{1}\:+{i}\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}}\:−{i} \\ $$$$=\mathrm{1}+{i}\frac{\mathrm{3}}{\mathrm{2}}−{i}=\mathrm{1}+{i}\left(\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}\right) \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{i} \\ $$

Answered by Ar Brandon last updated on 28/Jan/22

S=Σ_(n=1) ^∞ [((1/2))^n +i((1/3))^n ]     =Σ_(n=1) ^∞ ((1/2))^n +iΣ_(n=1) ^∞ ((1/3))^n      =1+i(1/2)

$${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} +{i}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} \right] \\ $$$$\:\:\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} +{i}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} \\ $$$$\:\:\:=\mathrm{1}+{i}\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com