Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 190284 by cortano12 last updated on 31/Mar/23

find the remainder if 4^(2023)    divides by 7

$$\mathrm{find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{if}\:\mathrm{4}^{\mathrm{2023}} \: \\ $$$$\mathrm{divides}\:\mathrm{by}\:\mathrm{7} \\ $$

Answered by alcohol last updated on 31/Mar/23

4^3  ≡ 1(mod 7)  ⇒ (4^3 )^(674)  ≡ 1(mod 7)  ⇒ 4^(2022)  ≡ 1(mod 7)  ⇒ 4^(2023)  ≡ 4(mod 7)  Remainder = 4

$$\mathrm{4}^{\mathrm{3}} \:\equiv\:\mathrm{1}\left({mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow\:\left(\mathrm{4}^{\mathrm{3}} \right)^{\mathrm{674}} \:\equiv\:\mathrm{1}\left({mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow\:\mathrm{4}^{\mathrm{2022}} \:\equiv\:\mathrm{1}\left({mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow\:\mathrm{4}^{\mathrm{2023}} \:\equiv\:\mathrm{4}\left({mod}\:\mathrm{7}\right) \\ $$$${Remainder}\:=\:\mathrm{4} \\ $$

Answered by BaliramKumar last updated on 31/Mar/23

(4^(2023) /7) = (2^(2×2023) /7) = (2^(4046) /7)   = (2^(3×1348+2) /7) = ((8^(1348) ×2^2 )/7)  = ((1^(1348) ×4)/7)= ((1×4)/7) = (4/7) = 4 (remainder)

$$\frac{\mathrm{4}^{\mathrm{2023}} }{\mathrm{7}}\:=\:\frac{\mathrm{2}^{\mathrm{2}×\mathrm{2023}} }{\mathrm{7}}\:=\:\frac{\mathrm{2}^{\mathrm{4046}} }{\mathrm{7}}\: \\ $$$$=\:\frac{\mathrm{2}^{\mathrm{3}×\mathrm{1348}+\mathrm{2}} }{\mathrm{7}}\:=\:\frac{\mathrm{8}^{\mathrm{1348}} ×\mathrm{2}^{\mathrm{2}} }{\mathrm{7}} \\ $$$$=\:\frac{\mathrm{1}^{\mathrm{1348}} ×\mathrm{4}}{\mathrm{7}}=\:\frac{\mathrm{1}×\mathrm{4}}{\mathrm{7}}\:=\:\frac{\mathrm{4}}{\mathrm{7}}\:=\:\mathrm{4}\:\left({remainder}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com