Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 50551 by pooja24 last updated on 17/Dec/18

find the real root of  x−(x^3 /3)+(x^5 /(10))−(x^7 /(42))+(x^9 /(216))−(x^(11) /(1320))+……=.443  please if any simple expansion of it  then plz tell me

$${find}\:{the}\:{real}\:{root}\:{of} \\ $$$${x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{10}}−\frac{{x}^{\mathrm{7}} }{\mathrm{42}}+\frac{{x}^{\mathrm{9}} }{\mathrm{216}}−\frac{{x}^{\mathrm{11}} }{\mathrm{1320}}+\ldots\ldots=.\mathrm{443} \\ $$$${please}\:{if}\:{any}\:{simple}\:{expansion}\:{of}\:{it} \\ $$$${then}\:{plz}\:{tell}\:{me} \\ $$$$ \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18

f(x)=x−(x^3 /3)+(x^5 /(10))−(x^7 /(42))+(x^9 /(216))−(x^(11) /(1320))+...  ((df(x))/dx)=1−x^2 +(x^4 /2)−(x^6 /6)+(x^8 /(24))−(x^(10) /(120))+...  let=k=x^2   Right hand side  1−k+(k^2 /(2!))−(k^3 /(3!))+(k^4 /(4!))−(k^5 /(5!))+...  =e^(−k)   =e^(−x^2 )   so ((df(x))/dx)=e^(−x^2 )   f(x)=∫e^(−x^2 ) dx         [from  table e^(−0.812) ≈0.443

$${f}\left({x}\right)={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{10}}−\frac{{x}^{\mathrm{7}} }{\mathrm{42}}+\frac{{x}^{\mathrm{9}} }{\mathrm{216}}−\frac{{x}^{\mathrm{11}} }{\mathrm{1320}}+... \\ $$$$\frac{{df}\left({x}\right)}{{dx}}=\mathrm{1}−{x}^{\mathrm{2}} +\frac{{x}^{\mathrm{4}} }{\mathrm{2}}−\frac{{x}^{\mathrm{6}} }{\mathrm{6}}+\frac{{x}^{\mathrm{8}} }{\mathrm{24}}−\frac{{x}^{\mathrm{10}} }{\mathrm{120}}+... \\ $$$${let}={k}={x}^{\mathrm{2}} \\ $$$${Right}\:{hand}\:{side} \\ $$$$\mathrm{1}−{k}+\frac{{k}^{\mathrm{2}} }{\mathrm{2}!}−\frac{{k}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{k}^{\mathrm{4}} }{\mathrm{4}!}−\frac{{k}^{\mathrm{5}} }{\mathrm{5}!}+... \\ $$$$={e}^{−{k}} \\ $$$$={e}^{−{x}^{\mathrm{2}} } \\ $$$${so}\:\frac{{df}\left({x}\right)}{{dx}}={e}^{−{x}^{\mathrm{2}} } \\ $$$${f}\left({x}\right)=\int{e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$ \\ $$$$\:\:\:\:\:\left[{from}\:\:{table}\:{e}^{−\mathrm{0}.\mathrm{812}} \approx\mathrm{0}.\mathrm{443}\right. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com