Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203329 by Calculusboy last updated on 16/Jan/24

find the ranges of value of x for which   series convergent or divergent  𝚺_(n=1) ^∞ (((n+1))/n^3 )x^n

$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{ranges}}\:\boldsymbol{{of}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}\:\boldsymbol{{for}}\:\boldsymbol{{which}}\: \\ $$$$\boldsymbol{{series}}\:\boldsymbol{{convergent}}\:\boldsymbol{{or}}\:\boldsymbol{{divergent}} \\ $$$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\left(\boldsymbol{{n}}+\mathrm{1}\right)}{\boldsymbol{{n}}^{\mathrm{3}} }\boldsymbol{{x}}^{\boldsymbol{{n}}} \\ $$

Answered by Mathspace last updated on 17/Jan/24

u_n (x)=((n+1)/n^3 )x^n   ∣((u_(n+1) (x))/(u_n (x)))∣=∣((((n+2)/((n+1)^3 ))x^(n+1) )/(((n+1)/n^3 )x^n ))∣  =((n+2)/((n+1)^3 ))×(n^3 /(n+1))∣x∣  =((n/(n+1)))^3 .((n+2)/(n+1))∣x∣→∣x∣(n→+∞)  si ∣x∣<1 the serie cv and r=1  si ∣x∣>1 the serie diverges  ifx=1 u_n (x)=((n+1)/n^3 )∼(1/n^2 )  Σ(1/n^2 )cv ⇒Σu_n (x) cv  if=x=−1  u_n (x)=(((n+1))/n^3 )(−1)^n   Σu_n (x)is a alternating serie  ⇒Σu_n (x) cv.

$${u}_{{n}} \left({x}\right)=\frac{{n}+\mathrm{1}}{{n}^{\mathrm{3}} }{x}^{{n}} \\ $$$$\mid\frac{{u}_{{n}+\mathrm{1}} \left({x}\right)}{{u}_{{n}} \left({x}\right)}\mid=\mid\frac{\frac{{n}+\mathrm{2}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }{x}^{{n}+\mathrm{1}} }{\frac{{n}+\mathrm{1}}{{n}^{\mathrm{3}} }{x}^{{n}} }\mid \\ $$$$=\frac{{n}+\mathrm{2}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }×\frac{{n}^{\mathrm{3}} }{{n}+\mathrm{1}}\mid{x}\mid \\ $$$$=\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{\mathrm{3}} .\frac{{n}+\mathrm{2}}{{n}+\mathrm{1}}\mid{x}\mid\rightarrow\mid{x}\mid\left({n}\rightarrow+\infty\right) \\ $$$${si}\:\mid{x}\mid<\mathrm{1}\:{the}\:{serie}\:{cv}\:{and}\:{r}=\mathrm{1} \\ $$$${si}\:\mid{x}\mid>\mathrm{1}\:{the}\:{serie}\:{diverges} \\ $$$${ifx}=\mathrm{1}\:{u}_{{n}} \left({x}\right)=\frac{{n}+\mathrm{1}}{{n}^{\mathrm{3}} }\sim\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\Sigma\frac{\mathrm{1}}{{n}^{\mathrm{2}} }{cv}\:\Rightarrow\Sigma{u}_{{n}} \left({x}\right)\:{cv} \\ $$$${if}={x}=−\mathrm{1}\:\:{u}_{{n}} \left({x}\right)=\frac{\left({n}+\mathrm{1}\right)}{{n}^{\mathrm{3}} }\left(−\mathrm{1}\right)^{{n}} \\ $$$$\Sigma{u}_{{n}} \left({x}\right){is}\:{a}\:{alternating}\:{serie} \\ $$$$\Rightarrow\Sigma{u}_{{n}} \left({x}\right)\:{cv}. \\ $$$$ \\ $$

Commented by Calculusboy last updated on 17/Jan/24

nice sir

$$\boldsymbol{{nice}}\:\boldsymbol{{sir}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com