Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 176501 by infinityaction last updated on 20/Sep/22

 find the range of x+y such that   (x−2)^2 + (y−4)^2  = 49

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\:\left({y}−\mathrm{4}\right)^{\mathrm{2}} \:=\:\mathrm{49} \\ $$

Commented by cortano1 last updated on 20/Sep/22

 let x+y=k ⇒x+y−k=0  is tangent to circle   so 7=((∣2+4−k∣)/( (√2)))   ⇒∣k−6∣ = 7(√2)  ⇒−7(√2) ≤ k−6≤7(√2)  ⇒6−7(√2) ≤k≤6+7(√2)  Therefore range of x+y  is [ 6−7(√2) , 6+7(√2) ]

$$\:\mathrm{let}\:\mathrm{x}+\mathrm{y}=\mathrm{k}\:\Rightarrow\mathrm{x}+\mathrm{y}−\mathrm{k}=\mathrm{0} \\ $$$$\mathrm{is}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{circle}\: \\ $$$$\mathrm{so}\:\mathrm{7}=\frac{\mid\mathrm{2}+\mathrm{4}−\mathrm{k}\mid}{\:\sqrt{\mathrm{2}}}\: \\ $$$$\Rightarrow\mid\mathrm{k}−\mathrm{6}\mid\:=\:\mathrm{7}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow−\mathrm{7}\sqrt{\mathrm{2}}\:\leqslant\:\mathrm{k}−\mathrm{6}\leqslant\mathrm{7}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{6}−\mathrm{7}\sqrt{\mathrm{2}}\:\leqslant\mathrm{k}\leqslant\mathrm{6}+\mathrm{7}\sqrt{\mathrm{2}} \\ $$$$\mathrm{Therefore}\:\mathrm{range}\:\mathrm{of}\:\mathrm{x}+\mathrm{y} \\ $$$$\mathrm{is}\:\left[\:\mathrm{6}−\mathrm{7}\sqrt{\mathrm{2}}\:,\:\mathrm{6}+\mathrm{7}\sqrt{\mathrm{2}}\:\right]\: \\ $$

Answered by Peace last updated on 20/Sep/22

 { ((x=2+7cos(t))),((y=4+7sin(t))) :}t∈[0,2π[  x+y=6+7(sin(t)+cos(t))=6+7(√2)(sin(t+(π/4)))  x+y∈[6−7(√2),6+7(√2)]

$$\begin{cases}{{x}=\mathrm{2}+\mathrm{7}{cos}\left({t}\right)}\\{{y}=\mathrm{4}+\mathrm{7}{sin}\left({t}\right)}\end{cases}{t}\in\left[\mathrm{0},\mathrm{2}\pi\left[\right.\right. \\ $$$${x}+{y}=\mathrm{6}+\mathrm{7}\left({sin}\left({t}\right)+{cos}\left({t}\right)\right)=\mathrm{6}+\mathrm{7}\sqrt{\mathrm{2}}\left({sin}\left({t}+\frac{\pi}{\mathrm{4}}\right)\right) \\ $$$${x}+{y}\in\left[\mathrm{6}−\mathrm{7}\sqrt{\mathrm{2}},\mathrm{6}+\mathrm{7}\sqrt{\mathrm{2}}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com