Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 204105 by CrispyXYZ last updated on 06/Feb/24

find the maximum of (1 + cosx) sinx  without derivative.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:\left(\mathrm{1}\:+\:\mathrm{cos}{x}\right)\:\mathrm{sin}{x} \\ $$$$\mathrm{without}\:\mathrm{derivative}. \\ $$

Answered by deleteduser1 last updated on 06/Feb/24

(1+cosx)(((√3)(sinx))/( (√3)))≤(((1+cos(x)+(√3)sinx)/2))^2 ×(1/( (√3)))  ≤(((1+(√(1^2 +((√3))^2 )))/2))^2 ×(1/( (√3)))=((3(√3))/4)  Equality holds when cosx=(√3)sinx−1  ⇒((√3)sinx−1)^2 +sin^2 x=1⇒4sin^2 x=2(√3)sinx  ⇒sin(x)=((√3)/2)⇒x=(π/3)+2nπ

$$\left(\mathrm{1}+{cosx}\right)\frac{\sqrt{\mathrm{3}}\left({sinx}\right)}{\:\sqrt{\mathrm{3}}}\leqslant\left(\frac{\mathrm{1}+{cos}\left({x}\right)+\sqrt{\mathrm{3}}{sinx}}{\mathrm{2}}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\leqslant\left(\frac{\mathrm{1}+\sqrt{\mathrm{1}^{\mathrm{2}} +\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }}{\mathrm{2}}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$$${Equality}\:{holds}\:{when}\:{cosx}=\sqrt{\mathrm{3}}{sinx}−\mathrm{1} \\ $$$$\Rightarrow\left(\sqrt{\mathrm{3}}{sinx}−\mathrm{1}\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} {x}=\mathrm{1}\Rightarrow\mathrm{4}{sin}^{\mathrm{2}} {x}=\mathrm{2}\sqrt{\mathrm{3}}{sinx} \\ $$$$\Rightarrow{sin}\left({x}\right)=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\Rightarrow{x}=\frac{\pi}{\mathrm{3}}+\mathrm{2}{n}\pi \\ $$

Commented by deleteduser1 last updated on 06/Feb/24

[How c=(√3) was gotten above]  (((1+cosx)csinx)/c)≤(((1+cosx+csinx)/2))^2 ×(1/c)≤(1/c)(((1+(√(c^2 +1)))^2 )/4)  Equality when cosx=csinx−1  ⇒(c^2 +1)sin^2 x−2csinx=0⇒sinx=((2c)/(c^2 +1))  ⇒cosx=((c^2 −1)/(c^2 +1))⇒((4c^4 )/((c^2 +1)^2 ))=((2+c^2 +2(√(c^2 +1)))/4)  ⇒c=(√3)

$$\left[{How}\:{c}=\sqrt{\mathrm{3}}\:{was}\:{gotten}\:{above}\right] \\ $$$$\frac{\left(\mathrm{1}+{cosx}\right){csinx}}{{c}}\leqslant\left(\frac{\mathrm{1}+{cosx}+{csinx}}{\mathrm{2}}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{{c}}\leqslant\frac{\mathrm{1}}{{c}}\frac{\left(\mathrm{1}+\sqrt{{c}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$${Equality}\:{when}\:{cosx}={csinx}−\mathrm{1} \\ $$$$\Rightarrow\left({c}^{\mathrm{2}} +\mathrm{1}\right){sin}^{\mathrm{2}} {x}−\mathrm{2}{csinx}=\mathrm{0}\Rightarrow{sinx}=\frac{\mathrm{2}{c}}{{c}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow{cosx}=\frac{{c}^{\mathrm{2}} −\mathrm{1}}{{c}^{\mathrm{2}} +\mathrm{1}}\Rightarrow\frac{\mathrm{4}{c}^{\mathrm{4}} }{\left({c}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{2}+{c}^{\mathrm{2}} +\mathrm{2}\sqrt{{c}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{4}} \\ $$$$\Rightarrow{c}=\sqrt{\mathrm{3}} \\ $$

Commented by CrispyXYZ last updated on 07/Feb/24

Nice sir

$${Nice}\:{sir} \\ $$

Answered by mr W last updated on 06/Feb/24

let t=tan (x/2)  for maximum of y we only need to  treat sin x>0 or t>0.    y=(1+cos x)sin x  =(1+((1−t^2 )/(1+t^2 )))×((2t)/(1+t^2 ))  =((4t)/((1+t^2 )^2 ))  =(4/(((1/( (√t)))+t(√t))^2 ))  =(4/(((1/( 3(√t)))+(1/( 3(√t)))+(1/( 3(√t)))+t(√t))^2 ))  ≤(4/((4×(((1/(3(√t)))×(1/(3(√t)))×(1/(3(√t)))×t(√t)))^(1/4) )^2 ))=((3(√3))/4)  i.e. maximum is ((3(√3))/4) which occurs  when (1/(3(√t)))=t(√t), i.e. t=(1/( (√3)))=tan (x/2)  or (x/2)=kπ+(π/6) or x=2kπ+(π/3)

$${let}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}} \\ $$$${for}\:{maximum}\:{of}\:{y}\:{we}\:{only}\:{need}\:{to} \\ $$$${treat}\:\mathrm{sin}\:{x}>\mathrm{0}\:{or}\:{t}>\mathrm{0}. \\ $$$$ \\ $$$${y}=\left(\mathrm{1}+\mathrm{cos}\:{x}\right)\mathrm{sin}\:{x} \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)×\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}}{\left(\frac{\mathrm{1}}{\:\sqrt{{t}}}+{t}\sqrt{{t}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}}{\left(\frac{\mathrm{1}}{\:\mathrm{3}\sqrt{{t}}}+\frac{\mathrm{1}}{\:\mathrm{3}\sqrt{{t}}}+\frac{\mathrm{1}}{\:\mathrm{3}\sqrt{{t}}}+{t}\sqrt{{t}}\right)^{\mathrm{2}} } \\ $$$$\leqslant\frac{\mathrm{4}}{\left(\mathrm{4}×\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}}{\mathrm{3}\sqrt{{t}}}×\frac{\mathrm{1}}{\mathrm{3}\sqrt{{t}}}×\frac{\mathrm{1}}{\mathrm{3}\sqrt{{t}}}×{t}\sqrt{{t}}}\right)^{\mathrm{2}} }=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$$${i}.{e}.\:{maximum}\:{is}\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}\:{which}\:{occurs} \\ $$$${when}\:\frac{\mathrm{1}}{\mathrm{3}\sqrt{{t}}}={t}\sqrt{{t}},\:{i}.{e}.\:{t}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}} \\ $$$${or}\:\frac{{x}}{\mathrm{2}}={k}\pi+\frac{\pi}{\mathrm{6}}\:{or}\:{x}=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{3}} \\ $$

Commented by CrispyXYZ last updated on 07/Feb/24

Thanks a lot sir

$${Thanks}\:{a}\:{lot}\:{sir} \\ $$

Answered by CrispyXYZ last updated on 07/Feb/24

Solution with Jensen′s Inequality:  S=(1+cos x)sin x  =sin x+(1/2)sin 2x  T=2π  I. x∈[0, (π/2)]  S=sin x+(1/2)sin(π−2x)     =(3/2)((2/3)sin x+(1/3)sin(π−2x))     ≤(3/2)sin((2/3)x+(π/3)−(2/3)x)=((3(√3))/4)          (x=(π/3))  II. x∈[−π, 0]  1+cos x≥0, sin x≤0  ⇒S≤0  III. x∈[(π/2), π]  S=sin(π−x)−(1/2)sin(2π−2x)     ≤sin(π−x)+(1/2)sin(2π−2x)     <((3(√3))/4)                                         (according to I)  Conclusion: S_(max) =((3(√3))/4)  ⇔ x=(π/3)+2kπ

$${Solution}\:{with}\:{Jensen}'{s}\:{Inequality}: \\ $$$${S}=\left(\mathrm{1}+\mathrm{cos}\:{x}\right)\mathrm{sin}\:{x} \\ $$$$=\mathrm{sin}\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x} \\ $$$${T}=\mathrm{2}\pi \\ $$$$\boldsymbol{\mathrm{I}}.\:{x}\in\left[\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right] \\ $$$${S}=\mathrm{sin}\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\pi−\mathrm{2}{x}\right) \\ $$$$\:\:\:=\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{\mathrm{2}}{\mathrm{3}}\mathrm{sin}\:{x}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}\left(\pi−\mathrm{2}{x}\right)\right) \\ $$$$\:\:\:\leqslant\frac{\mathrm{3}}{\mathrm{2}}\mathrm{sin}\left(\frac{\mathrm{2}}{\mathrm{3}}{x}+\frac{\pi}{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}{x}\right)=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\left({x}=\frac{\pi}{\mathrm{3}}\right) \\ $$$$\boldsymbol{\mathrm{II}}.\:{x}\in\left[−\pi,\:\mathrm{0}\right] \\ $$$$\mathrm{1}+\mathrm{cos}\:{x}\geqslant\mathrm{0},\:\mathrm{sin}\:{x}\leqslant\mathrm{0} \\ $$$$\Rightarrow{S}\leqslant\mathrm{0} \\ $$$$\boldsymbol{\mathrm{III}}.\:{x}\in\left[\frac{\pi}{\mathrm{2}},\:\pi\right] \\ $$$${S}=\mathrm{sin}\left(\pi−{x}\right)−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2}\pi−\mathrm{2}{x}\right) \\ $$$$\:\:\:\leqslant\mathrm{sin}\left(\pi−{x}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2}\pi−\mathrm{2}{x}\right) \\ $$$$\:\:\:<\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{according}\:\mathrm{to}\:\boldsymbol{\mathrm{I}}\right) \\ $$$$\mathrm{Conclusion}:\:{S}_{{max}} =\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}\:\:\Leftrightarrow\:{x}=\frac{\pi}{\mathrm{3}}+\mathrm{2}{k}\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com