Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 203270 by MrGHK last updated on 13/Jan/24

find the last 4 digits of 2024^(2023)

$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{last}}\:\mathrm{4}\:\boldsymbol{\mathrm{digits}}\:\boldsymbol{\mathrm{of}}\:\mathrm{2024}^{\mathrm{2023}} \\ $$

Answered by Frix last updated on 14/Jan/24

Last 4 digits of 2024^n   n=1 2024  Then a loop of length 50  f(n)=last 4 digits of 2024^n   f(n)=f(n+50k); 2≤n≤51∧k∈N  f(2023)=f(23)=7824

$$\mathrm{Last}\:\mathrm{4}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{2024}^{{n}} \\ $$$${n}=\mathrm{1}\:\mathrm{2024} \\ $$$$\mathrm{Then}\:\mathrm{a}\:\mathrm{loop}\:\mathrm{of}\:\mathrm{length}\:\mathrm{50} \\ $$$${f}\left({n}\right)=\mathrm{last}\:\mathrm{4}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{2024}^{{n}} \\ $$$${f}\left({n}\right)={f}\left({n}+\mathrm{50}{k}\right);\:\mathrm{2}\leqslant{n}\leqslant\mathrm{51}\wedge{k}\in\mathbb{N} \\ $$$${f}\left(\mathrm{2023}\right)={f}\left(\mathrm{23}\right)=\mathrm{7824} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com