Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 214002 by RoseAli last updated on 24/Nov/24

find the integers x that satisfies a congruence 3x=4 (mod 11) .

$${find}\:{the}\:{integers}\:{x}\:{that}\:{satisfies}\:{a}\:{congruence}\:\mathrm{3}{x}=\mathrm{4}\:\left({mod}\:\mathrm{11}\right)\:. \\ $$

Answered by Rasheed.Sindhi last updated on 24/Nov/24

3x≡4(mod 11)  3x≡4+11(mod 11)  3x≡15(mod 11)  ((3x)/3)≡((15)/3)(mod 11)  x≡5(mod 11)  x=11k+5 for k∈Z

$$\mathrm{3}{x}\equiv\mathrm{4}\left({mod}\:\mathrm{11}\right) \\ $$$$\mathrm{3}{x}\equiv\mathrm{4}+\mathrm{11}\left({mod}\:\mathrm{11}\right) \\ $$$$\mathrm{3}{x}\equiv\mathrm{15}\left({mod}\:\mathrm{11}\right) \\ $$$$\frac{\mathrm{3}{x}}{\mathrm{3}}\equiv\frac{\mathrm{15}}{\mathrm{3}}\left({mod}\:\mathrm{11}\right) \\ $$$${x}\equiv\mathrm{5}\left({mod}\:\mathrm{11}\right) \\ $$$${x}=\mathrm{11}{k}+\mathrm{5}\:{for}\:{k}\in\mathbb{Z} \\ $$

Answered by mehdee7396 last updated on 24/Nov/24

12x≡^(11) 16≡^(11) 5⇒x≡^(11) 5⇒x=11k+5

$$\mathrm{12}{x}\overset{\mathrm{11}} {\equiv}\mathrm{16}\overset{\mathrm{11}} {\equiv}\mathrm{5}\Rightarrow{x}\overset{\mathrm{11}} {\equiv}\mathrm{5}\Rightarrow{x}=\mathrm{11}{k}+\mathrm{5} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com