Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 63693 by Rio Michael last updated on 07/Jul/19

find the general solution for    sin5θ+sin3θ= 1

$${find}\:{the}\:{general}\:{solution}\:{for}\: \\ $$$$\:{sin}\mathrm{5}\theta+{sin}\mathrm{3}\theta=\:\mathrm{1} \\ $$

Commented by Prithwish sen last updated on 07/Jul/19

sin5θ+sin3θ=1  (5sinθ−20sin^3 θ+16sin^5 θ)+(3sinθ−4sin^3 θ) = 1  ⇒16sin^5 θ−24sin^3 θ+8sinθ−1=0  It is an equation of 5^(th)  degree. I don′t think  it is an easy one to solve.

$$\mathrm{sin5}\theta+\mathrm{sin3}\theta=\mathrm{1} \\ $$$$\left(\mathrm{5sin}\theta−\mathrm{20sin}^{\mathrm{3}} \theta+\mathrm{16sin}^{\mathrm{5}} \theta\right)+\left(\mathrm{3sin}\theta−\mathrm{4sin}^{\mathrm{3}} \theta\right)\:=\:\mathrm{1} \\ $$$$\Rightarrow\mathrm{16sin}^{\mathrm{5}} \theta−\mathrm{24sin}^{\mathrm{3}} \theta+\mathrm{8sin}\theta−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{5}^{\mathrm{th}} \:\mathrm{degree}.\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{an}\:\mathrm{easy}\:\mathrm{one}\:\mathrm{to}\:\mathrm{solve}. \\ $$

Commented by Rio Michael last updated on 07/Jul/19

really i think i got a difficulty in it

$${really}\:{i}\:{think}\:{i}\:{got}\:{a}\:{difficulty}\:{in}\:{it} \\ $$

Answered by MJS last updated on 07/Jul/19

no exact solution possible  for x∈[0, 2π[ I get  x_1 ≈.132171549 (≈7.57287194°)  x_2 ≈.620008878 (≈35.5238919°)  x_3 =π−x_2 ≈2.52158378 (≈144.476108°)  x_4 =π−x_1 ≈3.00942110 (≈172.427128°)  ⇒ generally x_i _(i=1) ^(4) +2nπ∧n∈Z (=x_i _(i=1) ^(4) °+n×360°∧n∈Z)

$$\mathrm{no}\:\mathrm{exact}\:\mathrm{solution}\:\mathrm{possible} \\ $$$$\mathrm{for}\:{x}\in\left[\mathrm{0},\:\mathrm{2}\pi\left[\:\mathrm{I}\:\mathrm{get}\right.\right. \\ $$$${x}_{\mathrm{1}} \approx.\mathrm{132171549}\:\left(\approx\mathrm{7}.\mathrm{57287194}°\right) \\ $$$${x}_{\mathrm{2}} \approx.\mathrm{620008878}\:\left(\approx\mathrm{35}.\mathrm{5238919}°\right) \\ $$$${x}_{\mathrm{3}} =\pi−{x}_{\mathrm{2}} \approx\mathrm{2}.\mathrm{52158378}\:\left(\approx\mathrm{144}.\mathrm{476108}°\right) \\ $$$${x}_{\mathrm{4}} =\pi−{x}_{\mathrm{1}} \approx\mathrm{3}.\mathrm{00942110}\:\left(\approx\mathrm{172}.\mathrm{427128}°\right) \\ $$$$\Rightarrow\:\mathrm{generally}\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{4}} {{x}_{{i}} }}+\mathrm{2}{n}\pi\wedge{n}\in\mathbb{Z}\:\left(=\underset{{i}=\mathrm{1}} {\overset{\mathrm{4}} {{x}_{{i}} }}°+{n}×\mathrm{360}°\wedge{n}\in\mathbb{Z}\right) \\ $$

Commented by Prithwish sen last updated on 08/Jul/19

Thank you sir

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com