Question Number 100899 by mhmd last updated on 29/Jun/20 | ||
$${find}\:{the}\:{fourier}\:{series}\:{of}\:{the}\:{function}\:{f}\left({x}\right)=\begin{cases}{{x}\:\:\:\:−\mathrm{2}\leqslant{x}\leqslant\mathrm{0}\:\:\:}\\{\mathrm{4}\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}}\end{cases}\:\:\:? \\ $$$${help}\:{me}\:{sir}\:? \\ $$ | ||
Answered by bramlex last updated on 29/Jun/20 | ||
$${f}\left({x}\right)\::\:{odd}\:{function}.\:{L}\:=\:\mathrm{4} \\ $$$${a}_{{n}} \:=\:\mathrm{0}\: \\ $$$${b}_{{n}} \:=\:\frac{\mathrm{2}}{{L}}\underset{\mathrm{0}} {\overset{{L}} {\int}}\:{f}\left({x}\right)\mathrm{sin}\:\left(\frac{{n}\pi{x}}{{L}}\right)\:{dx} \\ $$$${b}_{{n}} \:=\:\frac{\mathrm{2}}{\mathrm{4}}\left[\underset{−\mathrm{2}} {\overset{\mathrm{0}} {\int}}{x}\:\mathrm{sin}\:\left(\frac{{n}\pi{x}}{\mathrm{4}}\right){dx}+\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\mathrm{4sin}\:\left(\frac{{n}\pi{x}}{\mathrm{4}}\right)\:{dx}\right]\: \\ $$$${b}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left[\:\frac{\mathrm{16}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\mathrm{sin}\:\left(\frac{{n}\pi}{\mathrm{2}}\right)+\frac{\mathrm{4}}{{n}\pi}\:\right] \\ $$$${b}_{{n}} \:=\:\frac{\mathrm{8}}{\left({n}\pi\right)^{\mathrm{2}} }\:\mathrm{sin}\:\left(\frac{{n}\pi}{\mathrm{2}}\right)\:+\:\frac{\mathrm{2}}{{n}\pi} \\ $$$${f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{8}}{\left({n}\pi\right)^{\mathrm{2}} }\:\mathrm{sin}\:\left(\frac{{n}\pi}{\mathrm{2}}\right)+\frac{\mathrm{2}}{{n}\pi}\:\right].\:\mathrm{cos}\:\left(\frac{{n}\pi{x}}{\mathrm{4}}\right)\: \\ $$ | ||
Commented by mhmd last updated on 29/Jun/20 | ||
$${sir}\:{can}\:{you}\:{send}\:{the}\:{all}\:{solution}\:? \\ $$ | ||
Commented by mhmd last updated on 29/Jun/20 | ||
$${thank}\:{you}\:{sir} \\ $$ | ||