Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 100899 by mhmd last updated on 29/Jun/20

find the fourier series of the function f(x)= { ((x    −2≤x≤0   )),((4          0≤x≤2)) :}   ?  help me sir ?

$${find}\:{the}\:{fourier}\:{series}\:{of}\:{the}\:{function}\:{f}\left({x}\right)=\begin{cases}{{x}\:\:\:\:−\mathrm{2}\leqslant{x}\leqslant\mathrm{0}\:\:\:}\\{\mathrm{4}\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}}\end{cases}\:\:\:? \\ $$$${help}\:{me}\:{sir}\:? \\ $$

Answered by bramlex last updated on 29/Jun/20

f(x) : odd function. L = 4  a_n  = 0   b_n  = (2/L)∫_0 ^L  f(x)sin (((nπx)/L)) dx  b_n  = (2/4)[∫_(−2) ^0 x sin (((nπx)/4))dx+∫_0 ^2 4sin (((nπx)/4)) dx]   b_n =(1/2)[ ((16)/(n^2 π^2 ))sin (((nπ)/2))+(4/(nπ)) ]  b_n  = (8/((nπ)^2 )) sin (((nπ)/2)) + (2/(nπ))  f(x)=(a_0 /2) + Σ_(n=1) ^∞ [(8/((nπ)^2 )) sin (((nπ)/2))+(2/(nπ)) ]. cos (((nπx)/4))

$${f}\left({x}\right)\::\:{odd}\:{function}.\:{L}\:=\:\mathrm{4} \\ $$$${a}_{{n}} \:=\:\mathrm{0}\: \\ $$$${b}_{{n}} \:=\:\frac{\mathrm{2}}{{L}}\underset{\mathrm{0}} {\overset{{L}} {\int}}\:{f}\left({x}\right)\mathrm{sin}\:\left(\frac{{n}\pi{x}}{{L}}\right)\:{dx} \\ $$$${b}_{{n}} \:=\:\frac{\mathrm{2}}{\mathrm{4}}\left[\underset{−\mathrm{2}} {\overset{\mathrm{0}} {\int}}{x}\:\mathrm{sin}\:\left(\frac{{n}\pi{x}}{\mathrm{4}}\right){dx}+\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\mathrm{4sin}\:\left(\frac{{n}\pi{x}}{\mathrm{4}}\right)\:{dx}\right]\: \\ $$$${b}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left[\:\frac{\mathrm{16}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\mathrm{sin}\:\left(\frac{{n}\pi}{\mathrm{2}}\right)+\frac{\mathrm{4}}{{n}\pi}\:\right] \\ $$$${b}_{{n}} \:=\:\frac{\mathrm{8}}{\left({n}\pi\right)^{\mathrm{2}} }\:\mathrm{sin}\:\left(\frac{{n}\pi}{\mathrm{2}}\right)\:+\:\frac{\mathrm{2}}{{n}\pi} \\ $$$${f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{8}}{\left({n}\pi\right)^{\mathrm{2}} }\:\mathrm{sin}\:\left(\frac{{n}\pi}{\mathrm{2}}\right)+\frac{\mathrm{2}}{{n}\pi}\:\right].\:\mathrm{cos}\:\left(\frac{{n}\pi{x}}{\mathrm{4}}\right)\: \\ $$

Commented by mhmd last updated on 29/Jun/20

sir can you send the all solution ?

$${sir}\:{can}\:{you}\:{send}\:{the}\:{all}\:{solution}\:? \\ $$

Commented by mhmd last updated on 29/Jun/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com