Question Number 922 by 123456 last updated on 25/Apr/15 | ||
$$\mathrm{find}\:\mathrm{the}\:\mathrm{fourier}\:\mathrm{serie}\:\mathrm{of} \\ $$$${f}\left({t}\right)=\mathrm{sinh}\left({t}\right) \\ $$$$\mathrm{into}\:\mathrm{the}\:\mathrm{interval}\:\left(−\mathrm{1},+\mathrm{1}\right) \\ $$ | ||
Answered by prakash jain last updated on 25/Apr/15 | ||
$${F}\left({w}\right)=\underset{{k}=−\infty} {\overset{\infty} {\sum}}{a}_{{k}} {e}^{{jkw}_{\mathrm{0}} {t}} \\ $$$${w}_{\mathrm{0}} =\frac{\mathrm{2}\pi}{{T}}=\pi \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{1}} ^{\:+\mathrm{1}} \mathrm{sinh}\:\left(\mathrm{t}\right){e}^{−{kj}\pi{t}} {dt},\:{j}=\sqrt{−\mathrm{1}} \\ $$$$\mathrm{sinh}\:\left({t}\right)=\frac{{e}^{{t}} −{e}^{−{t}} }{\mathrm{2}} \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{\mathrm{4}}\left[\int_{−\mathrm{1}} ^{\:\mathrm{1}} {e}^{\left(\mathrm{1}−{j}\pi\right){kt}} {dt}−\int_{−\mathrm{1}} ^{\mathrm{1}} {e}^{\left(\mathrm{1}+{j}\pi\right){kt}} {dt}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{{e}^{\left(\mathrm{1}−{j}\pi\right){k}} }{\left(\mathrm{1}−{j}\pi\right){k}}−\frac{{e}^{−\left(\mathrm{1}−{j}\pi\right){k}} }{\left(\mathrm{1}−{j}\pi\right){k}}−\frac{{e}^{\left(\mathrm{1}+{j}\pi\right){k}} }{\left(\mathrm{1}+{j}\pi\right){k}}+\frac{{e}^{−\left(\mathrm{1}+{j}\pi\right){k}} }{\left(\mathrm{1}+{j}\pi\right){k}}\right] \\ $$$$\mathrm{Further}\:\mathrm{simplification}\:\mathrm{can}\:\mathrm{be}\:\mathrm{done}. \\ $$ | ||