Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 922 by 123456 last updated on 25/Apr/15

find the fourier serie of  f(t)=sinh(t)  into the interval (−1,+1)

$$\mathrm{find}\:\mathrm{the}\:\mathrm{fourier}\:\mathrm{serie}\:\mathrm{of} \\ $$$${f}\left({t}\right)=\mathrm{sinh}\left({t}\right) \\ $$$$\mathrm{into}\:\mathrm{the}\:\mathrm{interval}\:\left(−\mathrm{1},+\mathrm{1}\right) \\ $$

Answered by prakash jain last updated on 25/Apr/15

F(w)=Σ_(k=−∞) ^∞ a_k e^(jkw_0 t)   w_0 =((2π)/T)=π  a_k =(1/2)∫_(−1) ^( +1) sinh (t)e^(−kjπt) dt, j=(√(−1))  sinh (t)=((e^t −e^(−t) )/2)  a_k =(1/4)[∫_(−1) ^( 1) e^((1−jπ)kt) dt−∫_(−1) ^1 e^((1+jπ)kt) dt]  =(1/4)[(e^((1−jπ)k) /((1−jπ)k))−(e^(−(1−jπ)k) /((1−jπ)k))−(e^((1+jπ)k) /((1+jπ)k))+(e^(−(1+jπ)k) /((1+jπ)k))]  Further simplification can be done.

$${F}\left({w}\right)=\underset{{k}=−\infty} {\overset{\infty} {\sum}}{a}_{{k}} {e}^{{jkw}_{\mathrm{0}} {t}} \\ $$$${w}_{\mathrm{0}} =\frac{\mathrm{2}\pi}{{T}}=\pi \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{1}} ^{\:+\mathrm{1}} \mathrm{sinh}\:\left(\mathrm{t}\right){e}^{−{kj}\pi{t}} {dt},\:{j}=\sqrt{−\mathrm{1}} \\ $$$$\mathrm{sinh}\:\left({t}\right)=\frac{{e}^{{t}} −{e}^{−{t}} }{\mathrm{2}} \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{\mathrm{4}}\left[\int_{−\mathrm{1}} ^{\:\mathrm{1}} {e}^{\left(\mathrm{1}−{j}\pi\right){kt}} {dt}−\int_{−\mathrm{1}} ^{\mathrm{1}} {e}^{\left(\mathrm{1}+{j}\pi\right){kt}} {dt}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{{e}^{\left(\mathrm{1}−{j}\pi\right){k}} }{\left(\mathrm{1}−{j}\pi\right){k}}−\frac{{e}^{−\left(\mathrm{1}−{j}\pi\right){k}} }{\left(\mathrm{1}−{j}\pi\right){k}}−\frac{{e}^{\left(\mathrm{1}+{j}\pi\right){k}} }{\left(\mathrm{1}+{j}\pi\right){k}}+\frac{{e}^{−\left(\mathrm{1}+{j}\pi\right){k}} }{\left(\mathrm{1}+{j}\pi\right){k}}\right] \\ $$$$\mathrm{Further}\:\mathrm{simplification}\:\mathrm{can}\:\mathrm{be}\:\mathrm{done}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com