Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113111 by gopikrishnan last updated on 11/Sep/20

find the area bounded by the curve y^2 =x^3  and the lines x=0 y=1 and y=2

$${find}\:{the}\:{area}\:{bounded}\:{by}\:{the}\:{curve}\:{y}^{\mathrm{2}} ={x}^{\mathrm{3}} \:{and}\:{the}\:{lines}\:{x}=\mathrm{0}\:{y}=\mathrm{1}\:{and}\:{y}=\mathrm{2} \\ $$

Answered by 1549442205PVT last updated on 11/Sep/20

y^2 =x^3 ⇔y=(√x^3 ) .We find the  intersection points of y=(√x^3 ) with  y=1 and y=2.We get  A(1,1),B(^3 (√4),2).Hence,  S=∫_0 ^( 1) (2−1)dx+∫_1 ^( ^3 (√4)) (2−(√(x^3  )) )dx  =x∣_0 ^1 +2x∣_1 ^(^3 (√4)) −(2/5)x^(5/2) ∣_1 ^(^3 (√4)) =  =1+2(^3 (√4) −1)−(2/5)(^6 (√4^5 ) −1)  =−(3/5)+2^3 (√4) −(2/5)^6 (√4^5 ) ≈1.304881262

$$\mathrm{y}^{\mathrm{2}} =\mathrm{x}^{\mathrm{3}} \Leftrightarrow\mathrm{y}=\sqrt{\mathrm{x}^{\mathrm{3}} }\:.\mathrm{We}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{intersection}\:\mathrm{points}\:\mathrm{of}\:\mathrm{y}=\sqrt{\mathrm{x}^{\mathrm{3}} }\:\mathrm{with} \\ $$$$\mathrm{y}=\mathrm{1}\:\mathrm{and}\:\mathrm{y}=\mathrm{2}.\mathrm{We}\:\mathrm{get} \\ $$$$\mathrm{A}\left(\mathrm{1},\mathrm{1}\right),\mathrm{B}\left(\:^{\mathrm{3}} \sqrt{\mathrm{4}},\mathrm{2}\right).\mathrm{Hence}, \\ $$$$\mathrm{S}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{2}−\mathrm{1}\right)\mathrm{dx}+\int_{\mathrm{1}} ^{\:\:^{\mathrm{3}} \sqrt{\mathrm{4}}} \left(\mathrm{2}−\sqrt{\mathrm{x}^{\mathrm{3}} \:}\:\right)\mathrm{dx} \\ $$$$=\mathrm{x}\mid_{\mathrm{0}} ^{\mathrm{1}} +\mathrm{2x}\mid_{\mathrm{1}} ^{\:^{\mathrm{3}} \sqrt{\mathrm{4}}} −\frac{\mathrm{2}}{\mathrm{5}}\mathrm{x}^{\frac{\mathrm{5}}{\mathrm{2}}} \mid_{\mathrm{1}} ^{\:^{\mathrm{3}} \sqrt{\mathrm{4}}} = \\ $$$$=\mathrm{1}+\mathrm{2}\left(\:^{\mathrm{3}} \sqrt{\mathrm{4}}\:−\mathrm{1}\right)−\frac{\mathrm{2}}{\mathrm{5}}\left(\:^{\mathrm{6}} \sqrt{\mathrm{4}^{\mathrm{5}} }\:−\mathrm{1}\right) \\ $$$$=−\frac{\mathrm{3}}{\mathrm{5}}+\mathrm{2}\:^{\mathrm{3}} \sqrt{\mathrm{4}}\:−\frac{\mathrm{2}}{\mathrm{5}}\:^{\mathrm{6}} \sqrt{\mathrm{4}^{\mathrm{5}} }\:\approx\mathrm{1}.\mathrm{304881262} \\ $$

Commented by gopikrishnan last updated on 11/Sep/20

Thank u sir

$${Thank}\:{u}\:{sir} \\ $$

Commented by 1549442205PVT last updated on 12/Sep/20

You are welcome.

$$\mathrm{You}\:\mathrm{are}\:\mathrm{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com