Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 52677 by maxmathsup by imad last updated on 11/Jan/19

find nature of Σ_(n=2) ^∞ (−1)^n (√n)ln(((n+1)/(n−1))).

$${find}\:{nature}\:{of}\:\sum_{{n}=\mathrm{2}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \sqrt{{n}}{ln}\left(\frac{{n}+\mathrm{1}}{{n}−\mathrm{1}}\right). \\ $$

Commented by maxmathsup by imad last updated on 08/Feb/19

S =Σ_(n=2) ^∞ (−1)^n V_n    with V_n =(√n)ln(((n+1)/(n−1))) ⇒V_n =(√n)ln(((n−1+2)/(n−1)))  =(√n)ln(1+(2/(n−1))) ∼(√n)(2/(n−1)) =((√n)/(√(n−1))) (2/(√(n−1))) ∼ (2/(√(n−1)))  let W_n =(2/(√(n−1)))   we have W_n >0   W_n  is decreasing and  lim W_n =0  ⇒  Σ (−1)^n W_n  is a alternate serie convergent ⇒ S is convergent.

$${S}\:=\sum_{{n}=\mathrm{2}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {V}_{{n}} \:\:\:{with}\:{V}_{{n}} =\sqrt{{n}}{ln}\left(\frac{{n}+\mathrm{1}}{{n}−\mathrm{1}}\right)\:\Rightarrow{V}_{{n}} =\sqrt{{n}}{ln}\left(\frac{{n}−\mathrm{1}+\mathrm{2}}{{n}−\mathrm{1}}\right) \\ $$$$=\sqrt{{n}}{ln}\left(\mathrm{1}+\frac{\mathrm{2}}{{n}−\mathrm{1}}\right)\:\sim\sqrt{{n}}\frac{\mathrm{2}}{{n}−\mathrm{1}}\:=\frac{\sqrt{{n}}}{\sqrt{{n}−\mathrm{1}}}\:\frac{\mathrm{2}}{\sqrt{{n}−\mathrm{1}}}\:\sim\:\frac{\mathrm{2}}{\sqrt{{n}−\mathrm{1}}} \\ $$$${let}\:{W}_{{n}} =\frac{\mathrm{2}}{\sqrt{{n}−\mathrm{1}}}\:\:\:{we}\:{have}\:{W}_{{n}} >\mathrm{0}\:\:\:{W}_{{n}} \:{is}\:{decreasing}\:{and}\:\:{lim}\:{W}_{{n}} =\mathrm{0}\:\:\Rightarrow \\ $$$$\Sigma\:\left(−\mathrm{1}\right)^{{n}} {W}_{{n}} \:{is}\:{a}\:{alternate}\:{serie}\:{convergent}\:\Rightarrow\:{S}\:{is}\:{convergent}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jan/19

(T_n /T_(n−1) )=(((−1)^n )/((−1)^(n−1) ))×((√n)/(√(n−1)))×((ln(((n+1)/(n−1))))/(ln(((n−1+1)/(n−1−1)))))  =(−1)^1 ×(1/(√(1−(1/n))))×((ln(((1+(1/n))/(1−(1/n)))))/(ln((1/(1−(2/n))))))  =(−1)×1×((ln(((1+0)/(1−0))))/(ln((1/(1−0)))))  [since n→∞]  =−1×((ln1)/(ln1))  [here (0/0)  is coming]  if we cancell common N_r  and D_r  that is ln1  then given series is convergent...  so others are requested to CHECk...

$$\frac{{T}_{{n}} }{{T}_{{n}−\mathrm{1}} }=\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }×\frac{\sqrt{{n}}}{\sqrt{{n}−\mathrm{1}}}×\frac{{ln}\left(\frac{{n}+\mathrm{1}}{{n}−\mathrm{1}}\right)}{{ln}\left(\frac{{n}−\mathrm{1}+\mathrm{1}}{{n}−\mathrm{1}−\mathrm{1}}\right)} \\ $$$$=\left(−\mathrm{1}\right)^{\mathrm{1}} ×\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{n}}}}×\frac{{ln}\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{{n}}}{\mathrm{1}−\frac{\mathrm{1}}{{n}}}\right)}{{ln}\left(\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{2}}{{n}}}\right)} \\ $$$$=\left(−\mathrm{1}\right)×\mathrm{1}×\frac{{ln}\left(\frac{\mathrm{1}+\mathrm{0}}{\mathrm{1}−\mathrm{0}}\right)}{{ln}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{0}}\right)}\:\:\left[{since}\:{n}\rightarrow\infty\right] \\ $$$$=−\mathrm{1}×\frac{{ln}\mathrm{1}}{{ln}\mathrm{1}}\:\:\left[{here}\:\frac{\mathrm{0}}{\mathrm{0}}\:\:{is}\:{coming}\right] \\ $$$${if}\:{we}\:{cancell}\:{common}\:{N}_{{r}} \:{and}\:{D}_{{r}} \:{that}\:{is}\:{ln}\mathrm{1} \\ $$$${then}\:{given}\:{series}\:{is}\:{convergent}... \\ $$$${so}\:{others}\:{are}\:{requested}\:{to}\:\boldsymbol{{C}}{HECk}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com