Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 80027 by jagoll last updated on 30/Jan/20

find minimum  value of (√(x^2 +4))+(√(x^2 −24x+153))  for x≥0 in R

$${find}\:{minimum} \\ $$$${value}\:{of}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{24}{x}+\mathrm{153}} \\ $$$${for}\:{x}\geqslant\mathrm{0}\:{in}\:\mathbb{R} \\ $$

Commented by john santu last updated on 30/Jan/20

yes sir

$$\mathrm{yes}\:\mathrm{sir} \\ $$

Commented by john santu last updated on 30/Jan/20

f′(x) = (x/(√(x^2 +4)))+((x−12)/(√(x^2 −24x+153))) =0  (x/(12−x)) =(√((x^2 +4)/(x^2 −24x+153)))  (x^2 /(144−24x+x^2 )) =((x^2 +x)/(x^2 −24x+153))  x^4 −24x^3 +153x^2 =x^4 −24x^3 +144x^2   +4x^2 −96x+576  5x^2 +96x−576=0  x =((−96+(√(20736)))/(10)) = ((−96+144)/(10))=4.8  f_(min) = (√((((24)/5))^2 +4))+(√((((24)/5)−12)^2 +9))

$$\mathrm{f}'\left(\mathrm{x}\right)\:=\:\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}}+\frac{\mathrm{x}−\mathrm{12}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{24x}+\mathrm{153}}}\:=\mathrm{0} \\ $$$$\frac{\mathrm{x}}{\mathrm{12}−\mathrm{x}}\:=\sqrt{\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}{\mathrm{x}^{\mathrm{2}} −\mathrm{24x}+\mathrm{153}}} \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{144}−\mathrm{24x}+\mathrm{x}^{\mathrm{2}} }\:=\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{x}}{\mathrm{x}^{\mathrm{2}} −\mathrm{24x}+\mathrm{153}} \\ $$$$\mathrm{x}^{\mathrm{4}} −\mathrm{24x}^{\mathrm{3}} +\mathrm{153x}^{\mathrm{2}} =\mathrm{x}^{\mathrm{4}} −\mathrm{24x}^{\mathrm{3}} +\mathrm{144x}^{\mathrm{2}} \\ $$$$+\mathrm{4x}^{\mathrm{2}} −\mathrm{96x}+\mathrm{576} \\ $$$$\mathrm{5x}^{\mathrm{2}} +\mathrm{96x}−\mathrm{576}=\mathrm{0} \\ $$$$\mathrm{x}\:=\frac{−\mathrm{96}+\sqrt{\mathrm{20736}}}{\mathrm{10}}\:=\:\frac{−\mathrm{96}+\mathrm{144}}{\mathrm{10}}=\mathrm{4}.\mathrm{8} \\ $$$$\mathrm{f}_{\mathrm{min}} =\:\sqrt{\left(\frac{\mathrm{24}}{\mathrm{5}}\right)^{\mathrm{2}} +\mathrm{4}}+\sqrt{\left(\frac{\mathrm{24}}{\mathrm{5}}−\mathrm{12}\right)^{\mathrm{2}} +\mathrm{9}} \\ $$$$\:\:\:\:\:\:\: \\ $$

Commented by mr W last updated on 30/Jan/20

with x=4.8 we get exactly f=13.  i.e. f_(min) =13.

$${with}\:{x}=\mathrm{4}.\mathrm{8}\:{we}\:{get}\:{exactly}\:{f}=\mathrm{13}. \\ $$$${i}.{e}.\:{f}_{{min}} =\mathrm{13}. \\ $$

Commented by jagoll last updated on 30/Jan/20

thanks mr w and john

$${thanks}\:{mr}\:{w}\:{and}\:{john} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com