Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 153105 by alisiao last updated on 04/Sep/21

find  ln πšͺ(x) ?

$${find}\:\:\boldsymbol{{ln}}\:\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)\:? \\ $$

Answered by puissant last updated on 04/Sep/21

ln(Ξ“(x))=βˆ’Ξ³xβˆ’lnx+Ξ£_(k=1) ^∞ {(x/k)βˆ’ln(1+(x/k))}  =(xβˆ’(1/2))lnxβˆ’x+(1/2)ln(2Ο€)+(1/2)Ξ£_(n=2) ^∞ (((nβˆ’1))/(n(n+1)))ΞΆ(n,x+1)  =(xβˆ’(1/2))lnxβˆ’x+(1/2)ln(2Ο€)+2∫_0 ^∞ ((arctan((x/a)))/(e^(2Ο€x) βˆ’1))dx.

$${ln}\left(\Gamma\left({x}\right)\right)=βˆ’\gamma{x}βˆ’{lnx}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{{x}}{{k}}βˆ’{ln}\left(\mathrm{1}+\frac{{x}}{{k}}\right)\right\} \\ $$$$=\left({x}βˆ’\frac{\mathrm{1}}{\mathrm{2}}\right){lnx}βˆ’{x}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi\right)+\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left({n}βˆ’\mathrm{1}\right)}{{n}\left({n}+\mathrm{1}\right)}\zeta\left({n},{x}+\mathrm{1}\right) \\ $$$$=\left({x}βˆ’\frac{\mathrm{1}}{\mathrm{2}}\right){lnx}βˆ’{x}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi\right)+\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left(\frac{{x}}{{a}}\right)}{{e}^{\mathrm{2}\pi{x}} βˆ’\mathrm{1}}{dx}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com