Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 104533 by 175mohamed last updated on 22/Jul/20

find :  lim_(x→1) (((x+2)^2 +(x+1)^3 −17)/((√(x+3))−((x+7))^(1/3) ))

$${find}\:: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\left({x}+\mathrm{2}\right)^{\mathrm{2}} +\left({x}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{17}}{\sqrt{{x}+\mathrm{3}}−\sqrt[{\mathrm{3}}]{{x}+\mathrm{7}}} \\ $$

Answered by Dwaipayan Shikari last updated on 22/Jul/20

lim_(x→1) ((2(x+2)+3(x+1)^2 )/((1/2).(1/(√(x+3)))−(1/3)(x+7)^(−(2/3)) ))=((18)/((1/4)−(1/(12))))=108

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{2}\left({x}+\mathrm{2}\right)+\mathrm{3}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\sqrt{{x}+\mathrm{3}}}−\frac{\mathrm{1}}{\mathrm{3}}\left({x}+\mathrm{7}\right)^{−\frac{\mathrm{2}}{\mathrm{3}}} }=\frac{\mathrm{18}}{\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{12}}}=\mathrm{108} \\ $$

Answered by OlafThorendsen last updated on 22/Jul/20

x = u+1  lim_(u→0) (((u+3)^2 +(u+2)^3 −17)/((√(u+4))−((u+8))^(1/3) ))  lim_(u→0) ((9(1+(u/3))^2 +8(1+(u/2))^3 −17)/(2(√(1+(u/4)))−2((1+(u/8)))^(1/3) ))  lim_(u→0) ((9(1+((2u)/3))+8(1+((3u)/2))−17)/(2(1+(u/8))−2(1+(u/(24)))))  lim_(u→0) ((9(((2u)/3))+8(((3u)/2)))/(2((u/8))−2((u/(24)))))  lim_(u→0) ((6u+12u)/((u/4)−(u/(12))))  lim_(u→0) ((18u)/(u/6)) = 18×6 = 108

$${x}\:=\:{u}+\mathrm{1} \\ $$$$\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({u}+\mathrm{3}\right)^{\mathrm{2}} +\left({u}+\mathrm{2}\right)^{\mathrm{3}} −\mathrm{17}}{\sqrt{{u}+\mathrm{4}}−\sqrt[{\mathrm{3}}]{{u}+\mathrm{8}}} \\ $$$$\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{9}\left(\mathrm{1}+\frac{{u}}{\mathrm{3}}\right)^{\mathrm{2}} +\mathrm{8}\left(\mathrm{1}+\frac{{u}}{\mathrm{2}}\right)^{\mathrm{3}} −\mathrm{17}}{\mathrm{2}\sqrt{\mathrm{1}+\frac{{u}}{\mathrm{4}}}−\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{1}+\frac{{u}}{\mathrm{8}}}} \\ $$$$\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{9}\left(\mathrm{1}+\frac{\mathrm{2}{u}}{\mathrm{3}}\right)+\mathrm{8}\left(\mathrm{1}+\frac{\mathrm{3}{u}}{\mathrm{2}}\right)−\mathrm{17}}{\mathrm{2}\left(\mathrm{1}+\frac{{u}}{\mathrm{8}}\right)−\mathrm{2}\left(\mathrm{1}+\frac{{u}}{\mathrm{24}}\right)} \\ $$$$\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{9}\left(\frac{\mathrm{2}{u}}{\mathrm{3}}\right)+\mathrm{8}\left(\frac{\mathrm{3}{u}}{\mathrm{2}}\right)}{\mathrm{2}\left(\frac{{u}}{\mathrm{8}}\right)−\mathrm{2}\left(\frac{{u}}{\mathrm{24}}\right)} \\ $$$$\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{6}{u}+\mathrm{12}{u}}{\frac{{u}}{\mathrm{4}}−\frac{{u}}{\mathrm{12}}} \\ $$$$\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{18}{u}}{\frac{{u}}{\mathrm{6}}}\:=\:\mathrm{18}×\mathrm{6}\:=\:\mathrm{108} \\ $$$$ \\ $$

Commented by bobhans last updated on 22/Jul/20

(u/4)−(u/(12)) = ((3u)/(12))−(u/(12)) = ((2u)/(12)) = (u/6)

$$\frac{{u}}{\mathrm{4}}−\frac{{u}}{\mathrm{12}}\:=\:\frac{\mathrm{3}{u}}{\mathrm{12}}−\frac{{u}}{\mathrm{12}}\:=\:\frac{\mathrm{2}{u}}{\mathrm{12}}\:=\:\frac{{u}}{\mathrm{6}} \\ $$

Answered by bramlex last updated on 22/Jul/20

L′Hopital rule   lim_(x→1) ((2(x+2)+3(x+1)^2 )/((1/(2(√(x+3))))−(1/(3 (((x+7)^2 ))^(1/3) )))) =  ((6+12)/((1/4)−(1/(3.4)))) = ((18)/(((1/6)))) = 108 □

$${L}'{Hopital}\:{rule}\: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{2}\left({x}+\mathrm{2}\right)+\mathrm{3}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{3}}}−\frac{\mathrm{1}}{\mathrm{3}\:\sqrt[{\mathrm{3}}]{\left({x}+\mathrm{7}\right)^{\mathrm{2}} }}}\:= \\ $$$$\frac{\mathrm{6}+\mathrm{12}}{\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{3}.\mathrm{4}}}\:=\:\frac{\mathrm{18}}{\left(\frac{\mathrm{1}}{\mathrm{6}}\right)}\:=\:\mathrm{108}\:\square \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com