Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48177 by Abdo msup. last updated on 20/Nov/18

find lim_(x→0)    ∫_(x+1) ^(2x+1)    ((tarctan(t^2 +1))/(1+(1+t^2 )^2 ))dt

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\int_{{x}+\mathrm{1}} ^{\mathrm{2}{x}+\mathrm{1}} \:\:\:\frac{{tarctan}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{1}+\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$

Commented by kaivan.ahmadi last updated on 21/Nov/18

it is zero

$$\mathrm{it}\:\mathrm{is}\:\mathrm{zero} \\ $$

Commented by Abdo msup. last updated on 21/Nov/18

let A(x)=∫_(x+1) ^(2x+1)   (t/(1+(1+t^2 )^2 )) arctan(t^2 +1)dt by parts  u^′ =(t/(1+(1+t^2 )^2 )) and v=arctan(t^2  +1)⇒  A(x)=[(1/2)arctan(1+t^2 ).arctan(1+t^2 )]_(x+1) ^(2x+1)   −∫_(x+1) ^(2x+1)  (1/2)arctan(1+t^2 ) ((2t)/(1+(1+t^2 )^2 ))dt  =(1/2)( arctan^2 (1+(2x+1)^2 )−arctan(1+(x+1)^2 ))  −A(x) ⇒  A(x)=(1/4){ arctan^2 (1+(2x+1)^2 )−arctan(1+(x+1)^2 )}⇒  lim_(x→0) A(x)=(1/4){arctan^2 (2)−arctan^2 (2)} =0.

$${let}\:{A}\left({x}\right)=\int_{{x}+\mathrm{1}} ^{\mathrm{2}{x}+\mathrm{1}} \:\:\frac{{t}}{\mathrm{1}+\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{arctan}\left({t}^{\mathrm{2}} +\mathrm{1}\right){dt}\:{by}\:{parts} \\ $$$${u}^{'} =\frac{{t}}{\mathrm{1}+\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{and}\:{v}={arctan}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\Rightarrow \\ $$$${A}\left({x}\right)=\left[\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\mathrm{1}+{t}^{\mathrm{2}} \right).{arctan}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right]_{{x}+\mathrm{1}} ^{\mathrm{2}{x}+\mathrm{1}} \\ $$$$−\int_{{x}+\mathrm{1}} ^{\mathrm{2}{x}+\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\:\frac{\mathrm{2}{t}}{\mathrm{1}+\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\:{arctan}^{\mathrm{2}} \left(\mathrm{1}+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} \right)−{arctan}\left(\mathrm{1}+\left({x}+\mathrm{1}\right)^{\mathrm{2}} \right)\right) \\ $$$$−{A}\left({x}\right)\:\Rightarrow \\ $$$${A}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left\{\:{arctan}^{\mathrm{2}} \left(\mathrm{1}+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} \right)−{arctan}\left(\mathrm{1}+\left({x}+\mathrm{1}\right)^{\mathrm{2}} \right)\right\}\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} {A}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left\{{arctan}^{\mathrm{2}} \left(\mathrm{2}\right)−{arctan}^{\mathrm{2}} \left(\mathrm{2}\right)\right\}\:=\mathrm{0}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com