Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 84624 by subhankar10 last updated on 14/Mar/20

find grad r^m   where r=x^2 +y^2 +z^2

$$\mathrm{find}\:\mathrm{grad}\:\mathrm{r}^{\mathrm{m}} \:\:\mathrm{where}\:\mathrm{r}=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \\ $$

Answered by TANMAY PANACEA last updated on 14/Mar/20

▽^→ =i(∂/∂x)+j(∂/∂y)+k(∂/∂z)  is grade  to find ▽^→ (x^2 +y^2 +z^2 )^m   (i(∂/∂x)+j(∂/∂y)+k(∂/∂z))(x^2 +y^2 +z^2 )^m   =m(x^2 +y^2 +z^2 )^(m−1) (i2x+j2y+k2z)  =mr^(m−1) ×2(r^→ )=2mr^(m−1) .r^→   or   m(x^2 +y^2 +z^2 )^(m−1) ×2(ix+jy+kz)

$$\overset{\rightarrow} {\bigtriangledown}={i}\frac{\partial}{\partial{x}}+{j}\frac{\partial}{\partial{y}}+{k}\frac{\partial}{\partial{z}}\:\:{is}\:{grade} \\ $$$${to}\:{find}\:\overset{\rightarrow} {\bigtriangledown}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{{m}} \\ $$$$\left({i}\frac{\partial}{\partial{x}}+{j}\frac{\partial}{\partial{y}}+{k}\frac{\partial}{\partial{z}}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{{m}} \\ $$$$={m}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{{m}−\mathrm{1}} \left({i}\mathrm{2}{x}+{j}\mathrm{2}{y}+{k}\mathrm{2}{z}\right) \\ $$$$={mr}^{{m}−\mathrm{1}} ×\mathrm{2}\left(\overset{\rightarrow} {{r}}\right)=\mathrm{2}{mr}^{{m}−\mathrm{1}} .\overset{\rightarrow} {{r}} \\ $$$${or}\:\:\:{m}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{{m}−\mathrm{1}} ×\mathrm{2}\left({ix}+{jy}+{kz}\right) \\ $$

Commented by subhankar10 last updated on 15/Mar/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by TANMAY PANACEA last updated on 15/Mar/20

most welcome

$${most}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com