Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 69764 by Rio Michael last updated on 27/Sep/19

find   (dy/dx)  if  x = sin^2 t  and  y= tan t at  t = (π/4)

$${find}\:\:\:\frac{{dy}}{{dx}}\:\:{if}\:\:{x}\:=\:{sin}^{\mathrm{2}} {t}\:\:{and}\:\:{y}=\:{tan}\:{t}\:{at}\:\:{t}\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Commented by kaivan.ahmadi last updated on 27/Sep/19

(dy/dx)=((dy/dt)/(dx/dt))=((1+tan^2 t)/(sin2t))

$$\frac{{dy}}{{dx}}=\frac{\frac{{dy}}{{dt}}}{\frac{{dx}}{{dt}}}=\frac{\mathrm{1}+{tan}^{\mathrm{2}} {t}}{{sin}\mathrm{2}{t}} \\ $$

Answered by mind is power last updated on 27/Sep/19

(dy/dx)=(dy/dt).(dt/dx)=(dy/dt).((dx/dt))^(−1) =(1+tg^2 (t)).(sin(2t))^(−1) ∣_(t=(π/4)) =2.1^(−1) =2

$$\frac{{dy}}{{dx}}=\frac{{dy}}{{dt}}.\frac{{dt}}{{dx}}=\frac{{dy}}{{dt}}.\left(\frac{{dx}}{{dt}}\right)^{−\mathrm{1}} =\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)\right).\left({sin}\left(\mathrm{2}{t}\right)\right)^{−\mathrm{1}} \mid_{{t}=\frac{\pi}{\mathrm{4}}} =\mathrm{2}.\mathrm{1}^{−\mathrm{1}} =\mathrm{2} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com