Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31055 by abdo imad last updated on 02/Mar/18

find ∫_(−∞) ^(+∞)        (dx/((x^2  −x+1)(x^2  −2x+4))) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:−{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{4}\right)}\:. \\ $$

Commented by abdo imad last updated on 03/Mar/18

let decompose inside C(x) F(z)= (1/((z^(2 ) −z+1)(z^2  −2z +4)))  roots of z^2 −z +1⇒Δ=1−4=(i(√3))^2  ⇒z_1 =((1+i(√3))/2) and  z_2 =((1−i(√3))/2).  rootsof z^2  −2z +4=0 ⇒Δ^′ =1−4=−3=(i(√3))^2 ⇒  α_1 =1+i(√3)  and  α_2 =1−i(√3)  so  F(x)= (a/(z−z_1 )) +(b/(z−z_2 )) +(c/(z−α_1 )) +(d/(z−α_2 )) let put   p(z)=(z^(2 ) −z+1)(z^2  −2z+4) tbe roots are simples so  a=(1/(p^′ (z_1 ))) ^� , b=(1/(p^′ (z_2 )))  , c= (1/(p^′ (α_1 ))) , d= (1/(p^′ (α_2 )))⇒  ∫_(−∞) ^(+∞) F(z)dz=a∫_(−∞) ^(+∞)   (dz/(z−z_1 )) +b∫_(−∞) ^(+∞)   (dz/(z−z_2 )) +c∫_(−∞) ^(+∞)  (dz/(z−α_1 ))  + ∫_(−∞) ^(+∞)   (dz/(z−α_2 )) but we have proved that  ∫_R   (dz/(z−a))=iπ if Im(a)>0 and^ =−iπ if Im(a)<0 ⇒  ∫_(−∞) ^(+∞)  F(z)dz=((iπ)/(p^′ (z_1 ))) −((iπ)/(p^′ (z_2 ))) +((iπ)/(p^′ (α_1 ))) −((iπ)/(p^′ (α_2 ))) we have  p(z)=z^4  −2z^3  +4z^2  −z^3  +2z^2  −4z +z^2  −2z +4  =z^4  −3z^3  +7z^2  −6z +4 ⇒p^′ (z)= 4z^3  −9z^2  +14z −6 and  the value of I is p.p.determined....

$${let}\:{decompose}\:{inside}\:{C}\left({x}\right)\:{F}\left({z}\right)=\:\frac{\mathrm{1}}{\left({z}^{\mathrm{2}\:} −{z}+\mathrm{1}\right)\left({z}^{\mathrm{2}} \:−\mathrm{2}{z}\:+\mathrm{4}\right)} \\ $$$${roots}\:{of}\:{z}^{\mathrm{2}} −{z}\:+\mathrm{1}\Rightarrow\Delta=\mathrm{1}−\mathrm{4}=\left({i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:\Rightarrow{z}_{\mathrm{1}} =\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:{and} \\ $$$${z}_{\mathrm{2}} =\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}. \\ $$$${rootsof}\:{z}^{\mathrm{2}} \:−\mathrm{2}{z}\:+\mathrm{4}=\mathrm{0}\:\Rightarrow\Delta^{'} =\mathrm{1}−\mathrm{4}=−\mathrm{3}=\left({i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \Rightarrow \\ $$$$\alpha_{\mathrm{1}} =\mathrm{1}+{i}\sqrt{\mathrm{3}}\:\:{and}\:\:\alpha_{\mathrm{2}} =\mathrm{1}−{i}\sqrt{\mathrm{3}}\:\:{so} \\ $$$${F}\left({x}\right)=\:\frac{{a}}{{z}−{z}_{\mathrm{1}} }\:+\frac{{b}}{{z}−{z}_{\mathrm{2}} }\:+\frac{{c}}{{z}−\alpha_{\mathrm{1}} }\:+\frac{{d}}{{z}−\alpha_{\mathrm{2}} }\:{let}\:{put}\: \\ $$$${p}\left({z}\right)=\left({z}^{\mathrm{2}\:} −{z}+\mathrm{1}\right)\left({z}^{\mathrm{2}} \:−\mathrm{2}{z}+\mathrm{4}\right)\:{tbe}\:{roots}\:{are}\:{simples}\:{so} \\ $$$${a}=\frac{\mathrm{1}}{{p}^{'} \left({z}_{\mathrm{1}} \right)}\bar {\:},\:{b}=\frac{\mathrm{1}}{{p}^{'} \left({z}_{\mathrm{2}} \right)}\:\:,\:{c}=\:\frac{\mathrm{1}}{{p}^{'} \left(\alpha_{\mathrm{1}} \right)}\:,\:{d}=\:\frac{\mathrm{1}}{{p}^{'} \left(\alpha_{\mathrm{2}} \right)}\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} {F}\left({z}\right){dz}={a}\int_{−\infty} ^{+\infty} \:\:\frac{{dz}}{{z}−{z}_{\mathrm{1}} }\:+{b}\int_{−\infty} ^{+\infty} \:\:\frac{{dz}}{{z}−{z}_{\mathrm{2}} }\:+{c}\int_{−\infty} ^{+\infty} \:\frac{{dz}}{{z}−\alpha_{\mathrm{1}} } \\ $$$$+\:\int_{−\infty} ^{+\infty} \:\:\frac{{dz}}{{z}−\alpha_{\mathrm{2}} }\:{but}\:{we}\:{have}\:{proved}\:{that} \\ $$$$\int_{{R}} \:\:\frac{{dz}}{{z}−{a}}={i}\pi\:{if}\:{Im}\left({a}\right)>\mathrm{0}\:{an}\overset{} {{d}}=−{i}\pi\:{if}\:{Im}\left({a}\right)<\mathrm{0}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:{F}\left({z}\right){dz}=\frac{{i}\pi}{{p}^{'} \left({z}_{\mathrm{1}} \right)}\:−\frac{{i}\pi}{{p}^{'} \left({z}_{\mathrm{2}} \right)}\:+\frac{{i}\pi}{{p}^{'} \left(\alpha_{\mathrm{1}} \right)}\:−\frac{{i}\pi}{{p}^{'} \left(\alpha_{\mathrm{2}} \right)}\:{we}\:{have} \\ $$$${p}\left({z}\right)={z}^{\mathrm{4}} \:−\mathrm{2}{z}^{\mathrm{3}} \:+\mathrm{4}{z}^{\mathrm{2}} \:−{z}^{\mathrm{3}} \:+\mathrm{2}{z}^{\mathrm{2}} \:−\mathrm{4}{z}\:+{z}^{\mathrm{2}} \:−\mathrm{2}{z}\:+\mathrm{4} \\ $$$$={z}^{\mathrm{4}} \:−\mathrm{3}{z}^{\mathrm{3}} \:+\mathrm{7}{z}^{\mathrm{2}} \:−\mathrm{6}{z}\:+\mathrm{4}\:\Rightarrow{p}^{'} \left({z}\right)=\:\mathrm{4}{z}^{\mathrm{3}} \:−\mathrm{9}{z}^{\mathrm{2}} \:+\mathrm{14}{z}\:−\mathrm{6}\:{and} \\ $$$${the}\:{value}\:{of}\:{I}\:{is}\:{p}.{p}.{determined}.... \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com