Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 90970 by abdomathmax last updated on 27/Apr/20

find all functions f  (2×derivable) verify  (f^′ (x))^2  −(f(x))^2  =1 and f^′ (0)=1

$${find}\:{all}\:{functions}\:{f}\:\:\left(\mathrm{2}×{derivable}\right)\:{verify} \\ $$$$\left({f}^{'} \left({x}\right)\right)^{\mathrm{2}} \:−\left({f}\left({x}\right)\right)^{\mathrm{2}} \:=\mathrm{1}\:{and}\:{f}^{'} \left(\mathrm{0}\right)=\mathrm{1} \\ $$

Commented by mr W last updated on 27/Apr/20

y′=(dy/dx)=±(√(1+y^2 ))  (dy/(√(1+y^2 )))=±dx  ∫(dy/(√(1+y^2 )))=±∫dx  ln (y+(√(1+y^2 )))=sinh^(−1)  y=±(x+C)  ⇒y=±sinh (x+C)  y′=±cosh (x+C)  ±cosh (0+C)=1 ⇒C=0  ⇒y=±sinh (x)

$${y}'=\frac{{dy}}{{dx}}=\pm\sqrt{\mathrm{1}+{y}^{\mathrm{2}} } \\ $$$$\frac{{dy}}{\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}=\pm{dx} \\ $$$$\int\frac{{dy}}{\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}=\pm\int{dx} \\ $$$$\mathrm{ln}\:\left({y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\right)=\mathrm{sinh}^{−\mathrm{1}} \:{y}=\pm\left({x}+{C}\right) \\ $$$$\Rightarrow{y}=\pm\mathrm{sinh}\:\left({x}+{C}\right) \\ $$$${y}'=\pm\mathrm{cosh}\:\left({x}+{C}\right) \\ $$$$\pm\mathrm{cosh}\:\left(\mathrm{0}+{C}\right)=\mathrm{1}\:\Rightarrow{C}=\mathrm{0} \\ $$$$\Rightarrow{y}=\pm\mathrm{sinh}\:\left({x}\right) \\ $$

Commented by mathmax by abdo last updated on 28/Apr/20

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com