Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 98673 by MJS last updated on 15/Jun/20

find a_n  in terms of n  (I can′t find it...)  a_1 =1; a_2 =4  a_3 =a_2 ×4×((2^2 −1)/2^2 )  a_4 =a_3 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 )  a_5 =a_4 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 )×((4^2 −1)/4^2 )  ...  n≥2: a_(n+1) =4a_n Π_(k=2) ^n ((k^2 −1)/k^2 )

$$\mathrm{find}\:{a}_{{n}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n} \\ $$$$\left(\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{find}\:\mathrm{it}...\right) \\ $$$${a}_{\mathrm{1}} =\mathrm{1};\:{a}_{\mathrm{2}} =\mathrm{4} \\ $$$${a}_{\mathrm{3}} ={a}_{\mathrm{2}} ×\mathrm{4}×\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} } \\ $$$${a}_{\mathrm{4}} ={a}_{\mathrm{3}} ×\mathrm{4}×\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }×\frac{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}} } \\ $$$${a}_{\mathrm{5}} ={a}_{\mathrm{4}} ×\mathrm{4}×\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }×\frac{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }×\frac{\mathrm{4}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}^{\mathrm{2}} } \\ $$$$... \\ $$$${n}\geqslant\mathrm{2}:\:{a}_{{n}+\mathrm{1}} =\mathrm{4}{a}_{{n}} \underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\frac{{k}^{\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$

Answered by  M±th+et+s last updated on 16/Jun/20

sir what do you think about it  Σ_(k=2) ^n ((k^2 −1)/k^2 )=(1/(2+((a_n −1)/(an+1))))

$${sir}\:{what}\:{do}\:{you}\:{think}\:{about}\:{it} \\ $$$$\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\frac{{k}^{\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}+\frac{{a}_{{n}} −\mathrm{1}}{{an}+\mathrm{1}}} \\ $$

Answered by maths mind last updated on 16/Jun/20

⇔(a_(n+1) /a_n )=4.Π_(k=2) ^n .(((k−1)(k+1))/(k.k)).  Π_(k=2) ^n ((k+1)/k)=((n+1)/2)  Π_(k=2) ^n ((k−1)/k)=(1/n)  ⇒(a_(n+1) /a_n )=((2(n+1))/n)  ⇒Π_(j=1) ^(m−1) (a_(j+1) /a_j )=Π_(j=1) ^(m−1) ((2(n+1))/n)⇒(a_m /a_1 )=2^(m−1) .m  ⇒a_m =a_1 .m.2^(m−1)

$$\Leftrightarrow\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }=\mathrm{4}.\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}.\frac{\left({k}−\mathrm{1}\right)\left({k}+\mathrm{1}\right)}{{k}.{k}}. \\ $$$$\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\frac{{k}+\mathrm{1}}{{k}}=\frac{{n}+\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\frac{{k}−\mathrm{1}}{{k}}=\frac{\mathrm{1}}{{n}} \\ $$$$\Rightarrow\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }=\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}} \\ $$$$\Rightarrow\underset{{j}=\mathrm{1}} {\overset{{m}−\mathrm{1}} {\prod}}\frac{{a}_{{j}+\mathrm{1}} }{{a}_{{j}} }=\underset{{j}=\mathrm{1}} {\overset{{m}−\mathrm{1}} {\prod}}\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}}\Rightarrow\frac{{a}_{{m}} }{{a}_{\mathrm{1}} }=\mathrm{2}^{{m}−\mathrm{1}} .{m} \\ $$$$\Rightarrow{a}_{{m}} ={a}_{\mathrm{1}} .{m}.\mathrm{2}^{{m}−\mathrm{1}} \\ $$

Commented by MJS last updated on 16/Jun/20

great, thank you! I hadn′t thought of this

$$\mathrm{great},\:\mathrm{thank}\:\mathrm{you}!\:\mathrm{I}\:\mathrm{hadn}'\mathrm{t}\:\mathrm{thought}\:\mathrm{of}\:\mathrm{this} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com