Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 139023 by mohammad17 last updated on 21/Apr/21

find Re(z) and Im(z) of z=(−2i)^(−(3/2))

$${find}\:{Re}\left({z}\right)\:{and}\:{Im}\left({z}\right)\:{of}\:{z}=\left(−\mathrm{2}{i}\right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$

Answered by MJS_new last updated on 21/Apr/21

−2i=2e^(−(π/2)i)   (2e^(−(π/2)i) )^(−(3/2)) =2^(−(3/2)) e^(((3π)/4)i) =((√2)/4)(cos ((3π)/4) +i sin ((3π)/4))=  =−(1/4)+(1/4)i

$$−\mathrm{2i}=\mathrm{2e}^{−\frac{\pi}{\mathrm{2}}\mathrm{i}} \\ $$$$\left(\mathrm{2e}^{−\frac{\pi}{\mathrm{2}}\mathrm{i}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{2}^{−\frac{\mathrm{3}}{\mathrm{2}}} \mathrm{e}^{\frac{\mathrm{3}\pi}{\mathrm{4}}\mathrm{i}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left(\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{4}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{4}}\right)= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com