Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 212319 by Ghisom last updated on 09/Oct/24

find  G=(1/4)∫_0 ^(π/2) ln ((1+sin x)/(1−sin x)) dx

$$\mathrm{find} \\ $$$${G}=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{ln}\:\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}}\:{dx} \\ $$

Commented by Spillover last updated on 10/Oct/24

(π/4)ln 2  right?

$$\frac{\pi}{\mathrm{4}}\mathrm{ln}\:\mathrm{2}\:\:{right}? \\ $$

Commented by Frix last updated on 10/Oct/24

(π/4)ln 2≈.544  G≈.916

$$\frac{\pi}{\mathrm{4}}\mathrm{ln}\:\mathrm{2}\approx.\mathrm{544} \\ $$$${G}\approx.\mathrm{916} \\ $$

Answered by Spillover last updated on 10/Oct/24

=(1/4)∫_0 ^(π/2) ln (((1+sin x)/(1−sin x)))  =(1/4)∫_0 ^(π/2) ln (((1+sin x)/(1−sin x))×((1+sin x)/(1+sin x)))=(1/4)∫_0 ^(π/2) ln (((1+sin x)^2 )/(cos^2 x))  (1/4)∫_0 ^(π/2) ln (((1+sin x)^2 )/(cos^2 x))=(1/4)∫_0 ^(π/2) ln (1+sin x)^2 −ln cos^2 x  (1/4)∫_0 ^(π/2) ln (1+sin x)^2 −ln cos^2 x  (1/4)∫_0 ^(π/2) [2ln (1+sin x)−2ln cosx]dx  [(1/2)∫_0 ^(π/2) ln (1+sin x)dx]−[(1/2)∫_0 ^(π/2) ln cosx]dx  [(1/2)∫_0 ^(π/2) ln cosx]dx=−(π/2)ln 2  [(1/2)∫_0 ^(π/2) ln (1+sin x)dx]  ....

$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\left(\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\left(\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}}×\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{sin}\:{x}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\frac{\left(\mathrm{1}+\mathrm{sin}\:{x}\right)^{\mathrm{2}} }{\mathrm{cos}\:^{\mathrm{2}} {x}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\frac{\left(\mathrm{1}+\mathrm{sin}\:{x}\right)^{\mathrm{2}} }{\mathrm{cos}\:^{\mathrm{2}} {x}}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:{x}\right)^{\mathrm{2}} −\mathrm{ln}\:\mathrm{cos}\:^{\mathrm{2}} {x} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:{x}\right)^{\mathrm{2}} −\mathrm{ln}\:\mathrm{cos}\:^{\mathrm{2}} {x} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\mathrm{2ln}\:\left(\mathrm{1}+\mathrm{sin}\:{x}\right)−\mathrm{2ln}\:\mathrm{cos}{x}\right]{dx} \\ $$$$\left[\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:{x}\right){dx}\right]−\left[\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\mathrm{cos}{x}\right]{dx} \\ $$$$\left[\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\mathrm{cos}{x}\right]{dx}=−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$$\left[\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:{x}\right){dx}\right] \\ $$$$.... \\ $$

Answered by Ar Brandon last updated on 11/Oct/24

Ω=(1/4)∫_0 ^(π/2) ln(((1+sinx)/(1−sinx)))dx=(1/2)∫_0 ^(π/2) ln(((cos(x/2)+sin(x/2))/(cos(x/2)−sin(x/2))))dx      =(1/2)∫_0 ^(π/2) ln(((sin((x/2)+(π/4)))/(cos((x/2)+(π/4)))))dx=(1/2)∫_0 ^(π/2) ln(((cos(x/2))/(sin(x/2))))dx      =∫_0 ^(π/4) ln(((cosx)/(sinx)))dx=−∫_0 ^(π/4) ln(tanx)dx=G      G=Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 )) , Catalan′s constant.

$$\Omega=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{1}+\mathrm{sin}{x}}{\mathrm{1}−\mathrm{sin}{x}}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{cos}\frac{{x}}{\mathrm{2}}+\mathrm{sin}\frac{{x}}{\mathrm{2}}}{\mathrm{cos}\frac{{x}}{\mathrm{2}}−\mathrm{sin}\frac{{x}}{\mathrm{2}}}\right){dx} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{cos}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{cos}\frac{{x}}{\mathrm{2}}}{\mathrm{sin}\frac{{x}}{\mathrm{2}}}\right){dx} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\frac{\mathrm{cos}{x}}{\mathrm{sin}{x}}\right){dx}=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{tan}{x}\right){dx}={G} \\ $$$$\:\:\:\:{G}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:,\:\mathrm{Catalan}'\mathrm{s}\:\mathrm{constant}. \\ $$

Commented by Ghisom last updated on 12/Oct/24

yes

$$\mathrm{yes} \\ $$

Commented by Ar Brandon last updated on 12/Oct/24

Yep, Sir MJS ��

Commented by Spillover last updated on 12/Oct/24

How did you know if sir MJs.user name  is different

$${How}\:{did}\:{you}\:{know}\:{if}\:{sir}\:{MJs}.{user}\:{name} \\ $$$${is}\:{different} \\ $$

Commented by Ar Brandon last updated on 12/Oct/24

I can tell from his writings.

Commented by Frix last updated on 12/Oct/24

I′m confused. I thought it was me? So if it′s  not me, then who am I?  (I′m not Ghisom, Scout′s honor!)

$$\mathrm{I}'\mathrm{m}\:\mathrm{confused}.\:\mathrm{I}\:\mathrm{thought}\:\mathrm{it}\:\mathrm{was}\:\mathrm{me}?\:\mathrm{So}\:\mathrm{if}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{not}\:\mathrm{me},\:\mathrm{then}\:\mathrm{who}\:\mathrm{am}\:\mathrm{I}? \\ $$$$\left(\mathrm{I}'\mathrm{m}\:{not}\:\mathrm{Ghisom},\:\mathrm{Scout}'\mathrm{s}\:\mathrm{honor}!\right) \\ $$

Commented by Ghisom last updated on 13/Oct/24

if you were me I would see you in my  mirror and v/v. but I see me, at least I  see the same guy who′s on the photographs  with my wife.

$$\mathrm{if}\:\mathrm{you}\:\mathrm{were}\:\mathrm{me}\:\mathrm{I}\:\mathrm{would}\:\mathrm{see}\:\mathrm{you}\:\mathrm{in}\:\mathrm{my} \\ $$$$\mathrm{mirror}\:\mathrm{and}\:\mathrm{v}/\mathrm{v}.\:\mathrm{but}\:\mathrm{I}\:\mathrm{see}\:\mathrm{me},\:\mathrm{at}\:\mathrm{least}\:\mathrm{I} \\ $$$$\mathrm{see}\:\mathrm{the}\:\mathrm{same}\:\mathrm{guy}\:\mathrm{who}'\mathrm{s}\:\mathrm{on}\:\mathrm{the}\:\mathrm{photographs} \\ $$$$\mathrm{with}\:\mathrm{my}\:\mathrm{wife}. \\ $$

Commented by Ar Brandon last updated on 13/Oct/24

You're the long-white-bearded old man. Haha!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com