Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 203884 by Mathspace last updated on 31/Jan/24

find ∫_0 ^∞   (x^3 /((1+x)^4 (x+2)^5 ))dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }{dx} \\ $$

Answered by Frix last updated on 01/Feb/24

Use Ostrogradski′s Method to get  ∫(x^3 /((x+1)^4 (x+2)^5 ))dx=  =((288x^6 +2736x^5 +10608x^4 +21432x^3 +23745x^2 +13666x+3194)/(3(x+1)^3 (x+2)^4 ))+96∫(dx/((x+1)(x+2)))  ⇒ answer is  96ln 2 −((1597)/(24))

$$\mathrm{Use}\:\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\:\mathrm{to}\:\mathrm{get} \\ $$$$\int\frac{{x}^{\mathrm{3}} }{\left({x}+\mathrm{1}\right)^{\mathrm{4}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }{dx}= \\ $$$$=\frac{\mathrm{288}{x}^{\mathrm{6}} +\mathrm{2736}{x}^{\mathrm{5}} +\mathrm{10608}{x}^{\mathrm{4}} +\mathrm{21432}{x}^{\mathrm{3}} +\mathrm{23745}{x}^{\mathrm{2}} +\mathrm{13666}{x}+\mathrm{3194}}{\mathrm{3}\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{4}} }+\mathrm{96}\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is} \\ $$$$\mathrm{96ln}\:\mathrm{2}\:−\frac{\mathrm{1597}}{\mathrm{24}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com