Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 112446 by mathmax by abdo last updated on 07/Sep/20

find ∫_0 ^1  ((ln(1+x^2 ))/(1+x))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$

Answered by mathdave last updated on 08/Sep/20

solution to   let I=∫_0 ^1 ((ln(1+x^2 ))/(1+x))dx   using IBP  I=∣ln(1+x)ln(1+x^2 )∣_0 ^1 −2∫_0 ^1 ((xln(1+x))/(1+x^2 ))dx  I=ln^2 (2)−2I_1 ........(1)  Let   I_1 =∫_0 ^1 ((xln(1+x))/(1+x^2 ))dx=∫_0 ^1 [(((1+x^2 −1))/(1+x^2 ))]((ln(1+x))/x)dx  I_1 =∫_0 ^1 ((ln(1+x))/x)dx−∫_0 ^1 ((ln(1+x))/(x(1+x^2 )))dx  adopt faynmann trick  I_1 =∫_0 ^1 ((ln(1+x))/x)dx−∫_0 ^1 (1/(1+x^2 ))(∫_0 ^1 (1/(1+xy))dy)dx  I_1 =η(2)−∫_0 ^1 (1/(1+y^2 ))∫_0 ^1 [(y^2 /(1+xy))+((1−xy)/(1+x^2 ))]dxdy  I_1 =(π^2 /(12))−∫_0 ^1 (1/(1+y^2 ))[yln(1+y)+(π/4)−(y/2)ln2]dy  I_1 =(π^2 /(12))−∫_0 ^1 ((yln(1+y))/(1+y^2 ))−(π/4)∫_0 ^1 (1/(1+y^2 ))dy+(1/2)ln2∫_0 ^1 (y/(1+y^2 ))dy  I_1 =(π^2 /(12))−I_1 −(π^2 /(16))+((ln^2 (2))/4)  2I_1 =(π^2 /(48))+((ln^2 (2))/4)  ∵I_1 =(π^2 /(96))+((ln^2 (2))/8)  recall that   I=ln^2 (2)−2I_1 .........(1)  ∵I=ln^2 (2)−2[(π^2 /(96))+((ln^2 (2))/8)]  I=ln^2 (2)−((.π^2 )/(48))−((ln^2 (2))/4)  I=(3/4)ln^2 (2)−(π^2 /(48))  ∵∫_0 ^1 ((ln(1+x^2 ))/(1+x))dx=(3/4)ln^2 (2)−(π^2 /(48))  by mathdave(08/09/2020)

$${solution}\:{to}\: \\ $$$${let}\:{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}{dx}\:\:\:{using}\:{IBP} \\ $$$${I}=\mid\mathrm{ln}\left(\mathrm{1}+{x}\right)\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\mid_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}\mathrm{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${I}=\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{2}{I}_{\mathrm{1}} ........\left(\mathrm{1}\right) \\ $$$${Let}\: \\ $$$${I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}\mathrm{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \left[\frac{\left(\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\right]\frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx} \\ $$$${I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$${adopt}\:{faynmann}\:{trick} \\ $$$${I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{xy}}{dy}\right){dx} \\ $$$${I}_{\mathrm{1}} =\eta\left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{y}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\mathrm{1}} \left[\frac{{y}^{\mathrm{2}} }{\mathrm{1}+{xy}}+\frac{\mathrm{1}−{xy}}{\mathrm{1}+{x}^{\mathrm{2}} }\right]{dxdy} \\ $$$${I}_{\mathrm{1}} =\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{y}^{\mathrm{2}} }\left[{y}\mathrm{ln}\left(\mathrm{1}+{y}\right)+\frac{\pi}{\mathrm{4}}−\frac{{y}}{\mathrm{2}}\mathrm{ln2}\right]{dy} \\ $$$${I}_{\mathrm{1}} =\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{y}\mathrm{ln}\left(\mathrm{1}+{y}\right)}{\mathrm{1}+{y}^{\mathrm{2}} }−\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{y}^{\mathrm{2}} }{dy}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{y}}{\mathrm{1}+{y}^{\mathrm{2}} }{dy} \\ $$$${I}_{\mathrm{1}} =\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−{I}_{\mathrm{1}} −\frac{\pi^{\mathrm{2}} }{\mathrm{16}}+\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{4}} \\ $$$$\mathrm{2}{I}_{\mathrm{1}} =\frac{\pi^{\mathrm{2}} }{\mathrm{48}}+\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{4}} \\ $$$$\because{I}_{\mathrm{1}} =\frac{\pi^{\mathrm{2}} }{\mathrm{96}}+\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{8}} \\ $$$${recall}\:{that}\:\:\:{I}=\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{2}{I}_{\mathrm{1}} .........\left(\mathrm{1}\right) \\ $$$$\because{I}=\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{2}\left[\frac{\pi^{\mathrm{2}} }{\mathrm{96}}+\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{8}}\right] \\ $$$${I}=\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{.\pi^{\mathrm{2}} }{\mathrm{48}}−\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{4}} \\ $$$${I}=\frac{\mathrm{3}}{\mathrm{4}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}{dx}=\frac{\mathrm{3}}{\mathrm{4}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$${by}\:{mathdave}\left(\mathrm{08}/\mathrm{09}/\mathrm{2020}\right) \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 08/Sep/20

thanks

$$\mathrm{thanks} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Answered by mnjuly1970 last updated on 08/Sep/20

Commented by mathmax by abdo last updated on 08/Sep/20

thanks

$$\mathrm{thanks} \\ $$

Commented by mnjuly1970 last updated on 08/Sep/20

grateful sir .to me   you are ′ostad′( in our  language means  ′master  and scholar′ in his field)  in mathematics . thank  you so much sir for your  effort ....

$${grateful}\:{sir}\:.{to}\:{me}\: \\ $$$${you}\:{are}\:'{ostad}'\left(\:{in}\:{our}\right. \\ $$$${language}\:{means}\:\:'{master} \\ $$$$\left.{and}\:{scholar}'\:{in}\:{his}\:{field}\right) \\ $$$${in}\:{mathematics}\:.\:{thank} \\ $$$${you}\:{so}\:{much}\:{sir}\:{for}\:{your} \\ $$$${effort}\:.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com