Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 48161 by gunawan last updated on 20/Nov/18

f(z)=((1−z)/(1+z))  u(x,y)=..  v(x,y)=..

$${f}\left({z}\right)=\frac{\mathrm{1}−{z}}{\mathrm{1}+{z}} \\ $$$${u}\left({x},{y}\right)=.. \\ $$$${v}\left({x},{y}\right)=.. \\ $$$$ \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 20/Nov/18

let z=x+iy ⇒f(z)=((1−x−iy)/(1+x+iy)) =(((1−x−iy)(1+x−iy))/((1+x)^2  +y^2 ))  =((1−x^2 −iy(1−x)−iy(1+x)−y^2 )/(x^2  +y^2  +2x+1)) =((1−x^2 −y^2 −i(y−xy−y−xy))/(x^2  +y^2  +2x+1))  =((1−x^2 −y^2 )/(x^2  +y^2  +2x+1)) +i((2xy)/(x^2  +y^2  +2x+1)) =u+iv ⇒  u(x,y)=((1−x^2 −y^2 )/(x^2  +y^2  +2x+1)) and v(x,y)=((2xy)/(x^2  +y^2  +2x+1))

$${let}\:{z}={x}+{iy}\:\Rightarrow{f}\left({z}\right)=\frac{\mathrm{1}−{x}−{iy}}{\mathrm{1}+{x}+{iy}}\:=\frac{\left(\mathrm{1}−{x}−{iy}\right)\left(\mathrm{1}+{x}−{iy}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \:+{y}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}−{x}^{\mathrm{2}} −{iy}\left(\mathrm{1}−{x}\right)−{iy}\left(\mathrm{1}+{x}\right)−{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\mathrm{2}{x}+\mathrm{1}}\:=\frac{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −{i}\left({y}−{xy}−{y}−{xy}\right)}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\mathrm{2}{x}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\mathrm{2}{x}+\mathrm{1}}\:+{i}\frac{\mathrm{2}{xy}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\mathrm{2}{x}+\mathrm{1}}\:={u}+{iv}\:\Rightarrow \\ $$$${u}\left({x},{y}\right)=\frac{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\mathrm{2}{x}+\mathrm{1}}\:{and}\:{v}\left({x},{y}\right)=\frac{\mathrm{2}{xy}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\mathrm{2}{x}+\mathrm{1}} \\ $$

Answered by ajfour last updated on 21/Nov/18

f(z) = u+iv           =(((1−x)−iy)/((1+x)+iy))           = (([(1−x)−iy][(1+x)−iy])/((1+x)^2 +y^2 ))           = ((1−x^2 −y^2 )/((1+x)^2 +y^2 ))−i((2y)/((1+x^2 )+y^2 )) .

$${f}\left({z}\right)\:=\:{u}+{iv} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\left(\mathrm{1}−{x}\right)−{iy}}{\left(\mathrm{1}+{x}\right)+{iy}} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\left[\left(\mathrm{1}−{x}\right)−{iy}\right]\left[\left(\mathrm{1}+{x}\right)−{iy}\right]}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }−{i}\frac{\mathrm{2}{y}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)+{y}^{\mathrm{2}} }\:. \\ $$

Commented by gunawan last updated on 21/Nov/18

nice Sir

$$\mathrm{nice}\:\mathrm{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com