Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 923 by 123456 last updated on 25/Apr/15

f(x,y,z)=x+y+z  g(x,y,z)=(x,y,z)  h(x,y,z)=g(x,y,z)−▽f(x,y,z)=???  ▽∙h(x,y,z)=?  ▽×h(x,y,z)=???

$${f}\left({x},{y},{z}\right)={x}+{y}+{z} \\ $$$$\boldsymbol{{g}}\left({x},{y},{z}\right)=\left({x},{y},{z}\right) \\ $$$$\boldsymbol{{h}}\left({x},{y},{z}\right)=\boldsymbol{{g}}\left({x},{y},{z}\right)−\bigtriangledown{f}\left({x},{y},{z}\right)=??? \\ $$$$\bigtriangledown\centerdot\boldsymbol{{h}}\left({x},{y},{z}\right)=? \\ $$$$\bigtriangledown×\boldsymbol{{h}}\left({x},{y},{z}\right)=??? \\ $$

Answered by 2closedStringsMeet last updated on 15/Aug/15

    h=(x,y,z)−(1,1,1)  ∴  ▽f=(1+0+0, 0+1+0, 0+0+1)  ▽∙h=3                          ∴  h=(x−1, y−1, z−1)  ▽×h= (0,0,0)

$$ \\ $$$$ \\ $$$$\boldsymbol{{h}}=\left({x},{y},{z}\right)−\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:\:\therefore\:\:\bigtriangledown{f}=\left(\mathrm{1}+\mathrm{0}+\mathrm{0},\:\mathrm{0}+\mathrm{1}+\mathrm{0},\:\mathrm{0}+\mathrm{0}+\mathrm{1}\right) \\ $$$$\bigtriangledown\centerdot\boldsymbol{{h}}=\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\boldsymbol{{h}}=\left({x}−\mathrm{1},\:{y}−\mathrm{1},\:{z}−\mathrm{1}\right) \\ $$$$\bigtriangledown×\boldsymbol{{h}}=\:\left(\mathrm{0},\mathrm{0},\mathrm{0}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com