Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 168979 by MikeH last updated on 22/Apr/22

f(x,y,z) = (3x^2 y,x^3 +y^3 , 2z)  prove that the function has a potential  to be determined.

$${f}\left({x},{y},{z}\right)\:=\:\left(\mathrm{3}{x}^{\mathrm{2}} {y},{x}^{\mathrm{3}} +{y}^{\mathrm{3}} ,\:\mathrm{2}{z}\right) \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{has}\:\mathrm{a}\:\mathrm{potential} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{determined}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com