Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 1842 by 123456 last updated on 12/Oct/15

f(x,y)=f(x+y,xy)  f(x,y)=x,−2≤y≤2  f(x,y)=y,∣x∣≥100∨∣y∣≥100  f(0,0)=?  f(1,4)=?

$${f}\left({x},{y}\right)={f}\left({x}+{y},{xy}\right) \\ $$$${f}\left({x},{y}\right)={x},−\mathrm{2}\leqslant{y}\leqslant\mathrm{2} \\ $$$${f}\left({x},{y}\right)={y},\mid{x}\mid\geqslant\mathrm{100}\vee\mid{y}\mid\geqslant\mathrm{100} \\ $$$${f}\left(\mathrm{0},\mathrm{0}\right)=? \\ $$$${f}\left(\mathrm{1},\mathrm{4}\right)=? \\ $$

Commented by 123456 last updated on 12/Oct/15

(1,4)→(5,4)→(9,20)→(29,180)→...  (x,x)→(2x,x^2 )→(2x+x^2 ,2x^3 )→...

$$\left(\mathrm{1},\mathrm{4}\right)\rightarrow\left(\mathrm{5},\mathrm{4}\right)\rightarrow\left(\mathrm{9},\mathrm{20}\right)\rightarrow\left(\mathrm{29},\mathrm{180}\right)\rightarrow... \\ $$$$\left({x},{x}\right)\rightarrow\left(\mathrm{2}{x},{x}^{\mathrm{2}} \right)\rightarrow\left(\mathrm{2}{x}+{x}^{\mathrm{2}} ,\mathrm{2}{x}^{\mathrm{3}} \right)\rightarrow... \\ $$

Answered by Rasheed Soomro last updated on 13/Oct/15

 f(0,0)=0    [ ∵  f(x,y)=x,−2≤y≤2 and here x=0]  Since f(x,y)=f(x+y,xy)  Therefore f(1,4)=f(1+4,1.4)=f(5,4)  =f(9,20)=f(29,180) , here ∣y∣≥100   f(29,180)=180  [∵   f(x,y)=y,∣x∣≥100∨∣y∣≥100 ]  So,  f(1,4)=f(29,180)=180  Continueing further in this way we can also find   other values of f(1,4)  f(1,4)=f(29,180)=f(209,5220)=5220  f(1,4)=180,5220,...

$$\:{f}\left(\mathrm{0},\mathrm{0}\right)=\mathrm{0}\:\:\:\:\left[\:\because\:\:{f}\left({x},{y}\right)={x},−\mathrm{2}\leqslant{y}\leqslant\mathrm{2}\:{and}\:{here}\:{x}=\mathrm{0}\right] \\ $$$${Since}\:{f}\left({x},{y}\right)={f}\left({x}+{y},{xy}\right) \\ $$$${Therefore}\:{f}\left(\mathrm{1},\mathrm{4}\right)={f}\left(\mathrm{1}+\mathrm{4},\mathrm{1}.\mathrm{4}\right)={f}\left(\mathrm{5},\mathrm{4}\right) \\ $$$$={f}\left(\mathrm{9},\mathrm{20}\right)={f}\left(\mathrm{29},\mathrm{180}\right)\:,\:{here}\:\mid{y}\mid\geqslant\mathrm{100}\: \\ $$$${f}\left(\mathrm{29},\mathrm{180}\right)=\mathrm{180}\:\:\left[\because\:\:\:{f}\left({x},{y}\right)={y},\mid{x}\mid\geqslant\mathrm{100}\vee\mid{y}\mid\geqslant\mathrm{100}\:\right] \\ $$$${So}, \\ $$$${f}\left(\mathrm{1},\mathrm{4}\right)={f}\left(\mathrm{29},\mathrm{180}\right)=\mathrm{180} \\ $$$${Continueing}\:{further}\:{in}\:{this}\:{way}\:{we}\:{can}\:{also}\:{find}\: \\ $$$${other}\:{values}\:{of}\:{f}\left(\mathrm{1},\mathrm{4}\right) \\ $$$${f}\left(\mathrm{1},\mathrm{4}\right)={f}\left(\mathrm{29},\mathrm{180}\right)={f}\left(\mathrm{209},\mathrm{5220}\right)=\mathrm{5220} \\ $$$${f}\left(\mathrm{1},\mathrm{4}\right)=\mathrm{180},\mathrm{5220},... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com