Previous in Relation and Functions Next in Relation and Functions | ||
Question Number 57011 by 121194 last updated on 28/Mar/19 | ||
$${f}\left(\frac{{x}+{y}}{\mathrm{2}}\right){f}\left(\frac{{x}−{y}}{\mathrm{2}}\right)={g}\left({x}\right) \\ $$$${g}\left({x}+{y}\right){g}\left({x}−{y}\right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} −\left[{f}\left({y}\right)\right]^{\mathrm{2}} \\ $$$${f}\left({x}\right),{g}\left({x}\right)=? \\ $$ | ||
Answered by kaivan.ahmadi last updated on 28/Mar/19 | ||
$${g}\left({x}\right) \\ $$$$\bigstar{x}={y}=\mathrm{0}\Rightarrow{f}\left(\mathrm{0}\right){f}\left(\mathrm{0}\right)={g}\left(\mathrm{0}\right) \\ $$$${g}\left(\mathrm{0}\right){g}\left(\mathrm{0}\right)=\mathrm{0}\rightarrow{g}\left(\mathrm{0}\right)=\mathrm{0}\rightarrow{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\bigstar{x}={y}\Rightarrow \\ $$$${f}\left({x}\right){f}\left(\mathrm{0}\right)={g}\left({x}\right)\Rightarrow{g}\left({x}\right)=\mathrm{0} \\ $$$$\bigstar{y}=\mathrm{0}\Rightarrow \\ $$$${g}\left({x}\right){g}\left({x}\right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} \Rightarrow\left[{f}\left({x}\right)\right]^{\mathrm{2}} =\mathrm{0}\Rightarrow{f}\left({x}\right)=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$ | ||