Question Number 48208 by naka3546 last updated on 20/Nov/18 | ||
$${f}\left({x}\right)\:+\:\left({x}\:+\:\mathrm{1}\right)^{\mathrm{3}} \:\:=\:\:\mathrm{2}{f}\left({x}\:+\:\mathrm{1}\right) \\ $$$${f}\left(\mathrm{10}\right)\:\:=\:\:? \\ $$ | ||
Answered by MJS last updated on 20/Nov/18 | ||
$${f}\left({x}\right)={ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${f}\left({x}\right)+\left({x}+\mathrm{1}\right)^{\mathrm{3}} = \\ $$$$=\left({a}+\mathrm{1}\right){x}^{\mathrm{3}} +\left({b}+\mathrm{3}\right){x}^{\mathrm{2}} +\left({c}+\mathrm{3}\right){x}+\left({d}+\mathrm{1}\right) \\ $$$$\mathrm{2}{f}\left({x}+\mathrm{1}\right)= \\ $$$$=\mathrm{2}{ax}^{\mathrm{3}} +\mathrm{2}\left(\mathrm{3}{a}+{b}\right){x}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{3}{a}+\mathrm{2}{b}+{c}\right){x}+\mathrm{2}\left({a}+{b}+{c}+{d}\right) \\ $$$$\mathrm{comparing}\:\mathrm{the}\:\mathrm{constants} \\ $$$${a}+\mathrm{1}=\mathrm{2}{a} \\ $$$${b}+\mathrm{3}=\mathrm{2}\left(\mathrm{3}{a}+{b}\right) \\ $$$${c}+\mathrm{3}=\mathrm{2}\left(\mathrm{3}{a}+\mathrm{2}{b}+{c}\right) \\ $$$${d}+\mathrm{1}=\mathrm{2}\left({a}+{b}+{c}+{d}\right) \\ $$$$\Rightarrow\:{a}=\mathrm{1},\:{b}=−\mathrm{3},\:{c}=\mathrm{9},\:{d}=−\mathrm{13} \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}−\mathrm{13} \\ $$$${f}\left(\mathrm{10}\right)=\mathrm{777} \\ $$ | ||